Correlation Data Augmentation-Based YOLO-Integrated Object Detection of Thermal-Equalization Video Using Line Scanning Inductive Thermography
Abstract
:1. Introduction
2. Theory of LS Inductive Thermography
2.1. Mathematical Methods
2.2. LS-Based Inductive Thermography
3. Experimental Setup
3.1. Device Setup
3.2. Aluminum Specimen
4. Results
4.1. Data Acquisition of Thermal Image
4.2. Thermal Equalization with FFT Algorithm
4.3. Data Augmentation
4.4. Automatic Detection Using YOLOv4
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ororino-Rios, R.A.; Antonino-Daviu, J.A.; de Jesus Romero-Troncoso, R. Recent industrial applications of infrared thermography: A review. IEEE Trans. Ind. Inform. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- Zhao, Z. Review of non-destructive testing methods for defect detection of ceramics. Ceram. Int. 2021, 47, 4389–4397. [Google Scholar] [CrossRef]
- Meola, C. Nondestructive testing in composite materials. Appl. Sci. 2020, 10, 5012. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, X.L.; Yang, S.; Liu, J.; Ma, L.H. Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct. 2021, 263, 113659. [Google Scholar] [CrossRef]
- Ortiz, J.D.; Dolati, S.S.K.; Malla, P.; Mehrabi, A.; Nanni, A. Nondestructive testing (NDT) for damage detection in concrete elements with externally bonded fiber-reinforced polymer. Buildings 2024, 14, 246. [Google Scholar] [CrossRef]
- Gupta, M.; Khan, M.A.; Butola, R.; Singari, R.M. Advances in applications of Non-destructive Testing (NDT): A review. Adv. Mater. Process. Technol. 2022, 8, 2286–2307. [Google Scholar] [CrossRef]
- Shallo, M.; Schnall, M.; Klein, T.; Huber, N.; Reitinger, B. A review of non-destructive testing (NDT) techniques for defect detection: Application to fusion welding and future wire arc additive manufacturing processes. Materials 2022, 15, 3697. [Google Scholar] [CrossRef]
- Maldague, X.P. Nondestructive Testing Handbook: Infrared and Thermal Testing; American Society for Nondestructive Testing: Columbus, OH, USA, 2001. [Google Scholar]
- Bagavathiappa, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Maldague, X.P. Introduction to NDT by active infrared thermography. Mater. Eval. 2002, 60, 1060–1073. [Google Scholar]
- He, M.; Zhang, L.; Zheng, W.; Feng, Y. Crack detection based on a moving mode of eddy current thermography method. Measurement 2017, 109, 119–129. [Google Scholar] [CrossRef]
- Lee, S.J.; Chung, Y.J.; Kim, W.T.; Suh, H.K. Lateral Heat Distribution Characteristics of CLP S275 Using Gaussian FFT Algorithm in Optical Thermographic Testing. Appl. Sci. 2024, 14, 3776. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, Y.; Hong, B.; Liang, B.; Liu, Y. Enhanced Precision in Dam Crack Width Measurement: Leveraging Advanced Lightweight Network Identification for Pixel-Level Accuracy. Int. J. Intell. Syst. 2023, 2023, 9940881. [Google Scholar] [CrossRef]
- Li, H.; Gu, Z.; He, D.; Wang, X.; Huang, J.; Mo, Y.; Li, P.; Huang, Z.; Wu, F. A lightweight improved YOLOv5s model and its deployment for detecting pitaya fruits in daytime and nighttime light-supplement environments. Comput. Electron. Agric. 2024, 220, 108914. [Google Scholar] [CrossRef]
- Jumaah, H.J.; Rashid, A.A.; Saleh, S.A.R.; Jumaah, S.J. Deep Neural Remote Sensing and Sentinel-2 Satellite Image Processing of Kirkuk City, Iraq for Sustainable Prospective. J. Opt. Photonics Res. 2024. [Google Scholar] [CrossRef]
- Xia, H.; Wu, J.; Xu, Z.; Wang, J.; Wang, C. Defect visualization and depth quantification in scanning induction thermography. IEEE Sens. J. 2021, 21, 10437–10444. [Google Scholar] [CrossRef]
- Li, H.; Gao, B.; Miao, L.; Liu, D.; Ma, Q.; Tian, Q.; Woo, W.L. Multiphysics structured eddy current and thermography defects diagnostics system in moving mode. IEEE Trans. Ind. Inform. 2020, 17, 2566–2578. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, X.; Ma, J.; Zhen, D.; Zhang, H. Quantitative detection of cracks in steel using eddy current pulsed thermography. Sensors 2018, 18, 1070. [Google Scholar] [CrossRef]
- Li, X.; Gao, B.; Woo, W.L.; Tian, G.Y.; Qiu, X.; Gu, L. Quantitative surface crack evaluation based on eddy current pulsed thermography. IEEE Sens. J. 2016, 17, 412–421. [Google Scholar] [CrossRef]
- Delpueyo, D.; Balandraud, X.; Grédiac, M. Heat source reconstruction from noisy temperature fields using an optimized derivative Gaussian filter. Infrared Phys. Technol. 2013, 60, 312–322. [Google Scholar] [CrossRef]
- He, Y.; Mu, X.; Wu, J.; Ma, Y.; Yang, R.; Zhang, H.; Wang, P.; Wang, J.; Wang, Y. Intelligent Detection Algorithm Based on 2D/3D-UNet for Internal Defects of Carbon Fiber Composites. Nondestruct. Test. Eval. 2024, 39, 923–938. [Google Scholar] [CrossRef]
- Ma, Y.; Wong, L.; Vien, B.S.; Kuen, T.; Kodikara, J.; Chiu, W.K. Quasi-Active Thermal Imaging of Large Floating Covers Using Ambient Solar Energy. Remote Sens. 2020, 12, 3455. [Google Scholar] [CrossRef]
- Kulkami, N.N.; Raisi, K.; Valente, N.A.; Benoit, J.; Yu, T.; Sabato, A. Deep learning augmented infrared thermography for unmanned aerial vehicles structural health monitoring of roadways. Autom. Constr. 2023, 148, 104784. [Google Scholar]
- You, S.; Ji, Y.; Liu, S.; Mei, C.; Yao, X.; Feng, Y. A thermal infrared pedestrian-detection method for edge computing devices. Sensors 2022, 22, 6710. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Ibarra-Castanedo, C.; Garrido, I.; Duan, Y.; Maldague, X. Automatic detection and identification of defects by deep learning algorithms from pulsed thermography data. Sensors 2023, 23, 4444. [Google Scholar] [CrossRef]
- He, Y.; Deng, B.; Wang, H.; Cheng, L.; Zhou, K.; Cai, S.; Ciampa, F. Infrared machine vision and infrared thermography with deep learning: A review. Infrared Phys. Technol. 2021, 116, 103754. [Google Scholar] [CrossRef]
- Li, S.; Sun, S.; Liu, Y.; Qi, W.; Jiang, N.; Cui, C.; Zheng, P. Real-time lightweight YOLO model for grouting defect detection in external post-tensioned ducts via infrared thermography. Autom. Constr. 2024, 168, 105830. [Google Scholar] [CrossRef]
NDT Technique | Capability | Limitation | Cost |
---|---|---|---|
VT | Simple surface monitoring | Limited to surface defects; experience dependent | Low |
PT | Suitable for mass production | Sensitive to environment; surface only | Low to medium |
MPT | Effective for ferromagnetic parts | Surface only; flat, uncoated surface required | Medium |
IRT | Non-contact, fast surface inspection | Limited depth detection; sensitive to environmental conditions | High |
UT | Surface and internal inspection | Manual; skill dependent; expensive equipment | High |
RT | Surface and internal inspection | Expensive; time consuming; hazardous | Very high |
AE | Surface and internal analysis | Stress wave attenuation issues | High |
Density | |
Thermal Conductivity | |
Heat Capacity | |
Electrical Conductivity | |
Relative Permeability | 9.21 |
Moving Speed | Frame |
---|---|
5 mm/s | 2934 |
7 mm/s | 2323 |
9 mm/s | 1652 |
11 mm/s | 1480 |
13 mm/s | 1301 |
15 mm/s | 1051 |
Moving Speed | Max. Temperature | Residual Values |
---|---|---|
5 mm/s | 30.286 °C | 0.358 |
7 mm/s | 29.527 °C | −0.079 |
9 mm/s | 28.905 °C | −0.379 |
11 mm/s | 28.771 °C | −0.192 |
13 mm/s | 28.692 °C | 0.05 |
15 mm/s | 28.564 °C | 0.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Kim, W.-T.; Suh, H.-K. Correlation Data Augmentation-Based YOLO-Integrated Object Detection of Thermal-Equalization Video Using Line Scanning Inductive Thermography. Appl. Sci. 2024, 14, 11903. https://doi.org/10.3390/app142411903
Lee S-J, Kim W-T, Suh H-K. Correlation Data Augmentation-Based YOLO-Integrated Object Detection of Thermal-Equalization Video Using Line Scanning Inductive Thermography. Applied Sciences. 2024; 14(24):11903. https://doi.org/10.3390/app142411903
Chicago/Turabian StyleLee, Seung-Ju, Won-Tae Kim, and Hyun-Kyu Suh. 2024. "Correlation Data Augmentation-Based YOLO-Integrated Object Detection of Thermal-Equalization Video Using Line Scanning Inductive Thermography" Applied Sciences 14, no. 24: 11903. https://doi.org/10.3390/app142411903
APA StyleLee, S.-J., Kim, W.-T., & Suh, H.-K. (2024). Correlation Data Augmentation-Based YOLO-Integrated Object Detection of Thermal-Equalization Video Using Line Scanning Inductive Thermography. Applied Sciences, 14(24), 11903. https://doi.org/10.3390/app142411903