Towards the Emergence of the Medical Metaverse: A Pilot Study on Shared Virtual Reality for Orthognathic–Surgical Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Experimental System
- The users may study the model by moving and observing it from different directions to obtain a better understanding of the model structures.
- Cutting planes can be created and their locations interactively edited on the model by moving the points (Figure 1, middle).
- The model can be cut into separate parts using the previously defined cutting plane (Figure 1, right).
- Separate parts of the model can be moved relative to each other and locked into the desired positions.
- The position and orientation of a model part can be accurately fine-tuned using virtual handles that restrict the moves (Figure 2, left and middle).
- The user can measure how much the model parts have been moved and the angle between the defined planes (Figure 2, right).
- For effective collaboration, users can discuss with each other and point to specific points in the design (Figure 3, left).
2.2. Experiment Design
Subjective Measures
3. Experiment
3.1. Apparatus and Participants
3.2. Procedure
4. Results
Observations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-Dimensional |
3D | Three-Dimensional |
BSSO | Bilateral Sagittal Split Osteotomy |
CASS | Computer-Assisted Surgical Simulation |
CMF | Craniomaxillofacial |
HCI | Human–Computer Interaction |
ENT | Ear, Nose, and Throat (Surgeon) |
HMD | Head-Mounted Display |
VR | Virtual Reality |
References
- Park, S.M.; Kim, Y.G. A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access 2022, 10, 4209–4251. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Wang, G.; Badal, A.; Jia, X.; Maltz, J.S.; Mueller, K.; Myers, K.J.; Niu, C.; Vannier, M.; Yan, P.; Yu, Z.; et al. Development of metaverse for intelligent healthcare. Nat. Mach. Intell. 2022, 4, 922–929. [Google Scholar] [CrossRef]
- Churchill, E.F.; Snowdon, D. Collaborative virtual environments: An introductory review of issues and systems. Virtual Real. 1998, 3, 3–15. [Google Scholar] [CrossRef]
- Andaluz, V.H.; Sánchez, J.S.; Sánchez, C.R.; Quevedo, W.X.; Varela, J.; Morales, J.L.; Cuzco, G. Multi-user industrial training and education environment. In Augmented Reality, Virtual Reality, and Computer Graphics: 5th International Conference, AVR 2018, Otranto, Italy, 24–27 June 2018, Proceedings, Part II 5; Springer: Berlin/Heidelberg, Germany, 2018; pp. 533–546. [Google Scholar]
- Berg, L.P.; Vance, J.M. An industry case study: Investigating early design decision making in virtual reality. J. Comput. Inf. Sci. Eng. 2017, 17, 011001. [Google Scholar] [CrossRef]
- Narasimha, S.; Dixon, E.; Bertrand, J.W.; Madathil, K.C. An empirical study to investigate the efficacy of collaborative immersive virtual reality systems for designing information architecture of software systems. Appl. Ergon. 2019, 80, 175–186. [Google Scholar] [CrossRef]
- Pedersen, G.; Koumaditis, K. Virtual Reality (VR) in the Computer Supported Cooperative Work (CSCW) Domain: A Mapping and a Pre-study on Functionality and Immersion. In Virtual, Augmented and Mixed Reality. Industrial and Everyday Life Applications: 12th International Conference, VAMR 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020, Proceedings, Part II 22; Springer: Berlin/Heidelberg, Germany, 2020; pp. 136–153. [Google Scholar]
- Schina, L.; Lazoi, M.; Lombardo, R.; Corallo, A. Virtual reality for product development in manufacturing industries. In Augmented Reality, Virtual Reality, and Computer Graphics: Third International Conference, AVR 2016, Lecce, Italy, 15–18 June 2016. Proceedings, Part I 3; Springer: Berlin/Heidelberg, Germany, 2016; pp. 198–207. [Google Scholar]
- Wolfartsberger, J.; Zenisek, J.; Wild, N. Supporting teamwork in industrial virtual reality applications. Procedia Manuf. 2020, 42, 2–7. [Google Scholar] [CrossRef]
- Chow, Y.W.; Susilo, W.; Li, Y.; Li, N.; Nguyen, C. Visualization and Cybersecurity in the Metaverse: A Survey. J. Imaging 2022, 9, 11. [Google Scholar] [CrossRef]
- Mütterlein, J.; Jelsch, S.; Hess, T. Specifics of collaboration in virtual reality: How immersion drives the intention to collaborate. In Proceedings of the PACIS 2018, Yokohama, Japan, 26–30 June 2018. [Google Scholar]
- Liu, K.Y.; Wong, S.K.; Volonte, M.; Ebrahimi, E.; Babu, S.V. Investigating the Effects of Leading and Following Behaviors of Virtual Humans in Collaborative Fine Motor Tasks in Virtual Reality. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; pp. 330–339. [Google Scholar]
- Drey, T.; Albus, P.; der Kinderen, S.; Milo, M.; Segschneider, T.; Chanzab, L.; Rietzler, M.; Seufert, T.; Rukzio, E. Towards Collaborative Learning in Virtual Reality: A Comparison of Co-Located Symmetric and Asymmetric Pair-Learning. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–4 May 2022; pp. 1–19. [Google Scholar]
- Burova, A.; Palma, P.B.; Truong, P.; Mäkelä, J.; Heinonen, H.; Hakulinen, J.; Ronkainen, K.; Raisamo, R.; Turunen, M.; Siltanen, S. Distributed Asymmetric Virtual Reality in Industrial Context: Enhancing the Collaboration of Geographically Dispersed Teams in the Pipeline of Maintenance Method Development and Technical Documentation Creation. Appl. Sci. 2022, 12, 3728. [Google Scholar] [CrossRef]
- Wu, T.H.; Wu, F.; Liang, C.J.; Li, Y.F.; Tseng, C.M.; Kang, S.C. A virtual reality tool for training in global engineering collaboration. Univers. Access Inf. Soc. 2019, 18, 243–255. [Google Scholar] [CrossRef]
- Zaker, R.; Coloma, E. Virtual reality-integrated workflow in BIM-enabled projects collaboration and design review: A case study. Vis. Eng. 2018, 6, 4. [Google Scholar] [CrossRef]
- Tea, S.; Panuwatwanich, K.; Ruthankoon, R.; Kaewmoracharoen, M. Multiuser immersive virtual reality application for real-time remote collaboration to enhance design review process in the social distancing era. J. Eng. Des. Technol. 2021, 20, 281–298. [Google Scholar] [CrossRef]
- Heinonen, H.; Burova, A.; Siltanen, S.; Lähteenmäki, J.; Hakulinen, J.; Turunen, M. Evaluating the Benefits of Collaborative VR Review for Maintenance Documentation and Risk Assessment. Appl. Sci. 2022, 12, 7155. [Google Scholar] [CrossRef]
- Chheang, V.; Saalfeld, P.; Huber, T.; Huettl, F.; Kneist, W.; Preim, B.; Hansen, C. Collaborative virtual reality for laparoscopic liver surgery training. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 9–11 December 2019; pp. 1–17. [Google Scholar]
- Schott, D.; Saalfeld, P.; Schmidt, G.; Joeres, F.; Boedecker, C.; Huettl, F.; Lang, H.; Huber, T.; Preim, B.; Hansen, C. A vr/ar environment for multi-user liver anatomy education. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisboa, Portugal, 27 March–1 April 2021; pp. 296–305. [Google Scholar]
- Kyaw, B.M.; Saxena, N.; Posadzki, P.; Vseteckova, J.; Nikolaou, C.K.; George, P.P.; Divakar, U.; Masiello, I.; Kononowicz, A.A.; Zary, N.; et al. Virtual reality for health professions education: Systematic review and meta-analysis by the digital health education collaboration. J. Med. Internet Res. 2019, 21, e12959. [Google Scholar] [CrossRef] [PubMed]
- Luxenburger, A.; Prange, A.; Moniri, M.M.; Sonntag, D. Medicalvr: Towards medical remote collaboration using virtual reality. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 321–324. [Google Scholar]
- Liu, R.; Wen, X.; Jiang, M.; Yang, G.; Zhang, C.; Chen, X. Multiuser collaborative illustration and visualization for volumetric scientific data. Softw. Pract. Exp. 2021, 51, 1080–1096. [Google Scholar] [CrossRef]
- Butnaru, T.; Girbacia, F. Collaborative pre-surgery planning in a tele-immersive environment using vr technology. In International Conference on Advancements of Medicine and Health Care through Technology: 23–26 September, 2009, Cluj-Napoca, Romania; Springer: Berlin/Heidelberg, Germany, 2009; pp. 9–14. [Google Scholar]
- Pulijala, Y.; Ma, M.; Pears, M.; Peebles, D.; Ayoub, A. An innovative virtual reality training tool for orthognathic surgery. Int. J. Oral Maxillofac. Surg. 2018, 47, 1199–1205. [Google Scholar] [CrossRef]
- Zaragoza-Siqueiros, J.; Medellin-Castillo, H.I.; de la Garza-Camargo, H.; Lim, T.; Ritchie, J.M. An integrated haptic-enabled virtual reality system for orthognathic surgery planning. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 499–517. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tone, H.C.; Martin-Gutierrez, J.; Bustamante-Escapa, J.; Bustamante-Escapa, P. Spatial skills and perceptions of space: Representing 2D drawings as 3D drawings inside immersive virtual reality. Appl. Sci. 2021, 11, 1475. [Google Scholar] [CrossRef]
- Sutherland, I.E. A head-mounted three dimensional display. In Proceedings of the Fall Joint Computer Conference, Part I, San Francisco, CA, USA, 9–11 December 1968; pp. 757–764. [Google Scholar]
- Javaid, M.; Haleem, A. Virtual reality applications toward medical field. Clin. Epidemiol. Glob. Health 2020, 8, 600–605. [Google Scholar] [CrossRef]
- Monson, L.A. Bilateral sagittal split osteotomy. In Seminars in Plastic Surgery; Thieme Medical Publishers: New York, NY, USA, 2013; Volume 27, pp. 145–148. [Google Scholar]
- Alkhayer, A.; Piffkó, J.; Lippold, C.; Segatto, E. Accuracy of virtual planning in orthognathic surgery: A systematic review. Head Face Med. 2020, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.S.P.; Gateno, J.; Bell, R.B.; Hirsch, D.L.; Markiewicz, M.R.; Teichgraeber, J.F.; Zhou, X.; Xia, J.J. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: A prospective multicenter study. J. Oral Maxillofac. Surg. 2013, 71, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Zinser, M.J.; Sailer, H.F.; Ritter, L.; Braumann, B.; Maegele, M.; Zöller, J.E. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J. Oral Maxillofac. Surg. 2013, 71, 2151-e1. [Google Scholar] [CrossRef] [PubMed]
- Haas, O., Jr.; Becker, O.; De Oliveira, R. Computer-aided planning in orthognathic surgery—systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, A.; Pulijala, Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health 2019, 19, 238. [Google Scholar]
- Xia, J.; Ip, H.H.S.; Samman, N.; Wong, H.T.; Gateno, J.; Wang, D.; Yeung, R.W.; Kot, C.S.; Tideman, H. Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery. IEEE Trans. Inf. Technol. Biomed. 2001, 5, 97–107. [Google Scholar]
- Pidel, C.; Ackermann, P. Collaboration in virtual and augmented reality: A systematic overview. In Augmented Reality, Virtual Reality, and Computer Graphics: 7th International Conference, AVR 2020, Lecce, Italy, 7–10 September 2020, Proceedings, Part I 7; Springer: Berlin/Heidelberg, Germany, 2020; pp. 141–156. [Google Scholar]
- MacKenzie, I.S. Human-Computer Interaction: An Empirical Research Perspective; Morgan Kaufmann: Burlington, MA, USA, 2013. [Google Scholar]
- Li, Z.; Kiiveri, M.; Rantala, J.; Raisamo, R. Evaluation of haptic virtual reality user interfaces for medical marking on 3D models. Int. J. Hum. Comput. Stud. 2021, 147, 102561. [Google Scholar] [CrossRef]
- Ismail, D.B.; Aloui, K.; Naceur, M.S. Matching cephalometric points via Ant Colony Optimization. In Proceedings of the 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisi, 15–18 December 2020; pp. 289–293. [Google Scholar]
- Mangal, U.; Hwang, J.J.; Jo, H.; Lee, S.M.; Jung, Y.H.; Cho, B.H.; Cha, J.Y.; Choi, S.H. Effects of changes in the Frankfort horizontal plane definition on the three-dimensional cephalometric evaluation of symmetry. Appl. Sci. 2020, 10, 7956. [Google Scholar] [CrossRef]
- Rosati, R.; Rossetti, A.; De Menezes, M.; Ferrario, V.F.; Sforza, C. The occlusal plane in the facial context: Inter-operator repeatability of a new three-dimensional method. Int. J. Oral Sci. 2012, 4, 34–37. [Google Scholar] [CrossRef]
- Sheldon, G.F.; Ricketts, T.C.; Charles, A.; King, J.; Fraher, E.P.; Meyer, A. The global health workforce shortage: Role of surgeons and other providers. Adv. Surg. 2008, 42, 63–85. [Google Scholar] [CrossRef]
- Ahmed, H.; Carmody, J.B. On the looming physician shortage and strategic expansion of graduate medical education. Cureus 2020, 12, e9216. [Google Scholar] [CrossRef]
S1 | How successful were you in accomplishing what you were trying to do? |
S2 | How confident were you in your ability to use the tools? |
S3 | How efficient was the system to use? |
S4 | How easy was the system to use? |
S5 | Could you imagine using the system for your daily work? (How likely would you be to use the system?) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kangas, J.; Järnstedt, J.; Ronkainen, K.; Mäkelä, J.; Mehtonen, H.; Huuskonen, P.; Raisamo, R. Towards the Emergence of the Medical Metaverse: A Pilot Study on Shared Virtual Reality for Orthognathic–Surgical Planning. Appl. Sci. 2024, 14, 1038. https://doi.org/10.3390/app14031038
Kangas J, Järnstedt J, Ronkainen K, Mäkelä J, Mehtonen H, Huuskonen P, Raisamo R. Towards the Emergence of the Medical Metaverse: A Pilot Study on Shared Virtual Reality for Orthognathic–Surgical Planning. Applied Sciences. 2024; 14(3):1038. https://doi.org/10.3390/app14031038
Chicago/Turabian StyleKangas, Jari, Jorma Järnstedt, Kimmo Ronkainen, John Mäkelä, Helena Mehtonen, Pertti Huuskonen, and Roope Raisamo. 2024. "Towards the Emergence of the Medical Metaverse: A Pilot Study on Shared Virtual Reality for Orthognathic–Surgical Planning" Applied Sciences 14, no. 3: 1038. https://doi.org/10.3390/app14031038
APA StyleKangas, J., Järnstedt, J., Ronkainen, K., Mäkelä, J., Mehtonen, H., Huuskonen, P., & Raisamo, R. (2024). Towards the Emergence of the Medical Metaverse: A Pilot Study on Shared Virtual Reality for Orthognathic–Surgical Planning. Applied Sciences, 14(3), 1038. https://doi.org/10.3390/app14031038