MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation
Abstract
:1. Introduction
2. Method
2.1. Monte Carlo Simulation
2.2. Strategy for Generating a Stochastic Earthquake Catalogue
- (1)
- Youngs and Coppersmith [39] propose the exponential magnitude probability distribution approach to deal with the possible maximum () and minimum () magnitudes, as expressed in Equation (4). Based on the basic assumptions of Chinese probabilistic seismic hazard analysis, in the seismic belt, the magnitude distribution of earthquakes satisfies the doubly-truncated Gutenberg-Richter recurrence relation Equation (4) expressed below.
- (2)
- The seismic activity in the seismic province follows the Poisson distribution [37]. In [0, t], the probability of a total of earthquakes will be observed, as shown in Equation (6).
- (3)
- Determination of the location of the epicenter. The non-uniform spatial distribution of earthquake activity within the seismic belt is manifested by the activity of earthquakes at the potential source (which consists of the background seismicity zone and the tectonic features zone). In practice, the magnitude (m) is divided into intervals, and () represent the mid-value of the magnitude interval . The spatial distribution function () implies the occurrence probability of an earthquake generated by an individual potential source l with a magnitude interval mj.
- (4)
- The seismic azimuth angle (θ) is established by sampling the probability function associated with the long-axis azimuth of potential source region attenuation. By taking into account the comprehensive influence of seismic belts on the site, we iteratively execute these procedures until the specified number of earthquakes is met within the seismic belt, completing a sampling cycle. Consequently, seismic event sets can be generated through extensive sampling simulations.
- (5)
- The conversion of latitude and longitude coordinates to Cartesian coordinates is performed for each earthquake within the event set. Using the epicenter as the coordinate origin, a Cartesian right-handed rectangular coordinate system is established, with the x-axis pointing to the true east and the y-axis pointing to the true north. This coordinate system undergoes a counterclockwise rotation by a specific angle (θ). The coordinates of the site in the new Cartesian coordinate system, denoted as (), can be determined through simultaneous equations, as illustrated in Equation (13).
2.3. Estimation of Occurrence Probability of Earthquake Intensity
2.4. Estimation of Exceedance Probability of Earthquake Intensity
3. Geological Setting and Seismic Activity Parameters
4. Results and Analyses
4.1. Earthquake Catalog Simulation
4.2. Estimation of the Probability of an Earthquake Intensity
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhang, Z.; Xin, D. A Composite Catalog of Damaging Earthquakes for Mainland China. Seismol. Res. Lett. 2021, 92, 3767–3777. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Xie, F.; Lv, Y. Seismic hazard assessment for greater North China from historical intensity observations. Eng. Geol. 2013, 164, 117–130. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, K.; Wang, M.; Koks, E.E. Seismic Risk Assessment of the Railway Network of China’s Mainland. Int. J. Disaster Risk Sci. 2020, 11, 452–465. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, S183–S188. [Google Scholar] [CrossRef]
- Tanyas, H.; Rossi, M.; Alvioli, M.; Westen, C.J.; Marchesini, I. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 2019, 327, 126–146. [Google Scholar] [CrossRef]
- Crowley, H.; Despotaki, V.; Rodrigues, D.; Silva, V.; Toma-Danila, D.; Riga, E.; Karatzetzou, A.; Fotopoulou, S.; Zugic, Z.; Sousa, L.; et al. Exposure model for European seismic risk assessment. Earthq. Spectra 2020, 36, 875529302091942. [Google Scholar] [CrossRef]
- Silva, V.; Amo-Oduro, D.; Calderon, A.; Costa, C.; Dabbeek, J.; Despotaki, V.; Martins, L.; Pagani, M.; Rao, A.; Simionato, M.; et al. Development of a Global Seismic Risk Model. Earthq. Spectra 2020, 36, 372–394. [Google Scholar] [CrossRef]
- Silva, V.; Crowley, H.; Varum, H.; Pinho, R. Seismic risk assessment for mainland Portugal. Bull. Earthq. Eng. 2015, 13, 429–457. [Google Scholar] [CrossRef]
- Dolce, M.; Prota, A.; Borzi, B.; da Porto, F.; Lagomarsino, S.; Magenes, G.; Moroni, C.; Penna, A.; Polese, M.; Speranza, E.; et al. Seismic risk assessment of residential buildings in Italy. Bull. Earthq. Eng. 2021, 19, 2999–3032. [Google Scholar] [CrossRef]
- Mcguire, R.K. Deterministic vs. probabilistic earthquake hazards and risks. Soil Dyn. Earthq. Eng. 2011, 21, 377–384. [Google Scholar] [CrossRef]
- Milner, K.R.; Shaw, B.E.; Goulet, C.A.; Richards-Dinger, K.B.; Callaghan, S.; Jordan, T.H.; Dieterich, J.H.; Field, E.H. Toward Physics-Based Nonergodic PSHA: A Prototype Fully Deterministic Seismic Hazard Model for Southern California. Bull. Seismol. Soc. Am. 2021, 111, 898–915. [Google Scholar] [CrossRef]
- Valentini, A.; Pace, B.; Boncio, P.; Visini, F.; Pagliaroli, A.; Pergalani, F. Definition of Seismic Input From Fault-Based PSHA: Remarks After the 2016 Central Italy Earthquake Sequence. Tectonics 2019, 38, 595–620. [Google Scholar] [CrossRef]
- Taroni, M.; Akinci, A. Good practices in PSHA: Declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophys. J. Int. 2020, 224, 1174–1187. [Google Scholar] [CrossRef]
- Slejko, D.; Rebez, A.; Santulin, M. Seismic hazard estimates for the Vittorio Veneto broader area (NE Italy). Boll. Geofis. Teor. Appl. 2008, 49, 329–356. [Google Scholar]
- D’Amico, V.; Albarello, D. SASHA: A Computer Program to Assess Seismic Hazard from Intensity Data. Seismol. Res. Lett. 2008, 79, 663–671. [Google Scholar] [CrossRef]
- Turkstra, C. Seismic Risk and Engineering Decisions; Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands, 1976; pp. 287–289. [Google Scholar]
- Yuan, H.; Gao, X.; Qi, W. Assessing the seismic risk of cities at fine-scale: A case study of Haidian District in Beijing, China. Seismol. Geol. 2016, 38, 197–210. [Google Scholar]
- Chen, Y.; Chen, Q.; Chen, L. Vulnerability analysis in earthquake loss estimate. Nat. Hazards 2001, 23, 349–364. [Google Scholar]
- Peresan, A.; Magrin, A.; Nekrasova, A.; Kossobokov, V.G.; Panza, G.F. Earthquake recurrence and seismic hazard assessment: A comparative analysis over the Italian territory. In Proceedings of the Earthquake Resistant Engineering Structures IX, Coruña, Spain, 8–10 July 2013; pp. 23–34. [Google Scholar]
- Fu, Z.; Jiang, L.; Wang, X. Non-Stationary Poisson process of earthquake occurrence and research on long-and medium-term probabilistic earthquake prediction. Earthquake 1998, 18, 105–111. (In Chinese) [Google Scholar]
- Parsons, T. Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for California. J. Geophys. Res. 2008, 113, B03302. [Google Scholar] [CrossRef]
- Bourne, S.J.; Oates, S.J.; Bommer, J.J.; Dost, B.; Elk, J.v.; Doornhof, D. A Monte Carlo Method for probabilistic hazard assessment of induced seismicity due to conventional natural gas production. Bull. Seismol. Soc. Am. 2015, 105, 1721–1738. [Google Scholar] [CrossRef]
- Mohammed, T.; Atkinson, G.M.; Assatourians, K. Uncertainty in recurrence rates of large magnitude events due to short historic catalogs. J. Seismol. 2014, 18, 565–573. [Google Scholar] [CrossRef]
- Musson, R.M.W. The use of Monte Carlo simulations for seismic hazard assessment in the U.K. Ann. Geophys. 2000, 43, 1–9. [Google Scholar] [CrossRef]
- Bolotin, V. Seismic risk assessment for structures with the Monte Carlo simulation. Probabilistic Eng. Mech. 1993, 8, 169–177. [Google Scholar] [CrossRef]
- Emmi, P.C.; Horton, C.A. A Monte Carlo simulation of error propagation in a GIS-based assessment of seismic risk. Int. J. Geogr. Inf. Syst. 1995, 9, 447–461. [Google Scholar] [CrossRef]
- Musson, R.M.W.; Sellami, S.; Brüstle, W. Preparing a seismic hazard model for Switzerland: The view from PEGASOS Expert Group 3 (EG1c). Swiss J. Geosci. 2009, 102, 107–120. [Google Scholar] [CrossRef]
- Gaxiola-Camacho, J.R.; Azizsoltani, H.; Villegas-Mercado, F.J.; Haldar, A. A novel reliability technique for implementation of performance-based seismic design of structures. Eng. Struct. 2017, 142, 137–147. [Google Scholar] [CrossRef]
- Assatourians, K.; Atkinson, G.M. EqHaz: An Open-Source Probabilistic Seismic-Hazard Code Based on the Monte Carlo Simulation Approach. Seismol. Res. Lett. 2013, 84, 516–524. [Google Scholar] [CrossRef]
- Weatherill, G.A. A Monte Carlo Approach to Probabilistic Seismic Hazard Analysis in the Aegean Region. Tectonophysics 2009, 492, 253–278. [Google Scholar] [CrossRef]
- Liu, J.; Gao, M.; Wu, S. Probabilitic seismic landslide hazard zonation method and its application. Chin. J. Rock Mech. Eng. 2016, 35, 3100–3110. [Google Scholar]
- Li, B.; Sørensen, M.B.; Atakan, K.; Li, Y.; Li, Z. Probabilistic Seismic Hazard Assessment for the Shanxi Rift System, North China. Bull. Seismol. Soc. Am. 2020, 110, 127–153. [Google Scholar] [CrossRef]
- Li, C.; Xu, W.; Wu, J.; Gao, M. Time-dependent probabilistic seismic hazard assessment for Taiyuan, Shanxi Province, China, and the surrounding area. J. Seismol. 2017, 21, 749–757. [Google Scholar] [CrossRef]
- Huh, U.; Cho, W.; Ramachandra, R.; Joy, D.C. Monte Carlo Modeling of Ion Beam Induced Secondary Electrons. Microsc. Microanal. 2016, 168, 28. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, T. Monte Carlo and Quasi-Monte Carlo Methods 2000. Acta Numer. 1998, 7, 1–49. [Google Scholar]
- Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. Acm Trans. Model. Comput. Simul. 1998, 8, 3–30. [Google Scholar] [CrossRef]
- Pan, H.; Gao, M.; Xie, F. The Earthquake Activity Model and Seismicity Parameters in the New Seismic Hazard Map of China. Technol. Earthq. Disaster Prev. 2013, 8, 11–23. [Google Scholar]
- Pan, H.; Gao, M.; Li, J. Comments on the Models of Seismic Source and Parameters Used in the New Edition of United States National Seismic Hazard Maps. Technol. Earthq. Disaster Prev. 2009, 4, 131–140. [Google Scholar]
- Youngs, R.R.; Coppersmith, K.J. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull. Seismol. Soc. Am. 1985, 75, 939–964. [Google Scholar] [CrossRef]
- Hu, Y. Earthquake Engineering; Seismological Press: Beijing, China, 2006; p. 566. [Google Scholar]
- Lanczos, C. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Intergral Operators. J. Res. Natl. Bur. Stand. 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Shi, J.; Wu, L.; Wu, S.; Li, B.; Wang, T.; Xin, P. Analysis of the causes of large-scale loess landslides in Baoji, China. Geomorphology 2016, 264, 109–117. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, G.; Gao, Z.; Zhou, Q.; Li, J. The technical highlights in identifying the potential seismic sources for the update of national seismic zoning map of China. Technol. Earthq. Disaster Prev. 2016, 8, 113–124. [Google Scholar]
- Fan, W.; Du, W.; Wang, X.; Shao, H.; Wen, Y. Seismic motion attenuation relations in shaanxi areas. J. Earthq. Eng. Eng. Vib. 2011, 31, 47–54. [Google Scholar]
- Chen, D. Study on relationship between ground-motion peak accelerations and different levels of exceeding probability in Guanzhong area of Shaanxi province. J. Earthq. Eng. Eng. Vib. 2012, 32, 34–40. [Google Scholar] [CrossRef]
- Gao, M. Occurrence probability model of earthquke intensity based on the Poisson distribution. Earthq. Res. China 1996, 13, 195–201. [Google Scholar]
- Chen, K.; Gao, M. Computational Method of Occurrence Probability of Earthquake Intensity Based on MapInfo. Earthq. Res. China 2008, 24, 399–406. [Google Scholar]
- Mulargia, F.; Stark, P.B.; Geller, R.J. Why is probabilistic seismic hazard analysis (PSHA) still used? Phys. Earth Planet. Inter. 2017, 264, 63–75. [Google Scholar] [CrossRef]
Seismic Province | b | |
---|---|---|
Standard Deviation | Standard Deviation | |
Middle-reach of Yangtze River | 0.13 | 0.43 |
North China plain | 0.11 | 0.39 |
Ordos | 0.12 | 0.26 |
Fenwei | 0.11 | 0.40 |
Yinchuan-Hetao | 0.14 | 0.37 |
Longmenshan | 0.15 | 0.30 |
Liupan-qilian Mountain | 0.16 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, X.; Wang, X.; Xu, C.; Ma, S. MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation. Appl. Sci. 2024, 14, 1079. https://doi.org/10.3390/app14031079
Shao X, Wang X, Xu C, Ma S. MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation. Applied Sciences. 2024; 14(3):1079. https://doi.org/10.3390/app14031079
Chicago/Turabian StyleShao, Xiaoyi, Xiaoqing Wang, Chong Xu, and Siyuan Ma. 2024. "MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation" Applied Sciences 14, no. 3: 1079. https://doi.org/10.3390/app14031079
APA StyleShao, X., Wang, X., Xu, C., & Ma, S. (2024). MCPSHA: A New Tool for Probabilistic Seismic Hazard Analysis Based on Monte Carlo Simulation. Applied Sciences, 14(3), 1079. https://doi.org/10.3390/app14031079