Poly(ε-caprolactone)–Ionic Liquid Composite as Piezoionic Mechanical Sensor
Abstract
:1. Introduction
2. Materials and Methods
Characterization Methods
- TIRA GmbH (Schalkau, Germany) S51110 Shaker: Used to impress motion in the sensor arranged as a cantilever beam.
- Agilent Infiniium MSO9064A Digital Oscilloscope (Agilent, Santa Clara, CA, USA): Equipped with an 8-bit resolution and a maximum input sensitivity of 5 V/div (with a 1 MΩ load). It was employed for signal visualization and acquisition.
- Keysight 33220A Signal Generator (Keysight Technologies Italy S.r.l., Milano, Italy): Used to drive the shaker, thereby enabling precise control over mechanical vibrations.
- Baumer 12U6460/S35A Laser Sensors (×2) (Baumer Italia S.r.l. Assago, MI, Italy): These sensors, with a resolution of approximately 2 µm and adjustable sensitivity, measured vibration at the anchor and monitored tip displacement.
- Accelerometer PCB333B40-SN51174 (PCB Piezotronics, Depew, NY, USA): Mounted on the shaker’s moving plate, this accelerometer served as a reference with a resolution of a 0.0005 m/s2 root mean squared value (RMS) and a sensitivity of about 51.0 mV/(m/s2).
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robinson, B.H. E-waste: An assessment of global production and environmental impacts. Sci. Total. Environ. 2009, 408, 183–191. [Google Scholar] [CrossRef]
- Kiddee, P.; Naidu, R.; Wong, M.H. Electronic waste management approaches: An overview. Waste Manag. 2013, 33, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.K.; Wang, Z.; Dai, J.; Carter, M.; Hu, L. Transient Electronics: Materials and Devices. Chem. Mater. 2016, 28, 3527–3539. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Kong, D.; Yin, L. Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 2018, 3, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, L.; Yin, L. Materials and Devices for Biodegradable and Soft Biomedical Electronics. Materials 2018, 11, 2108. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Ye, S.; Handschuh-Wang, S.; Zhou, X.; Gan, T.; Zhou, X. Liquid Metal-Based Transient Circuits for Flexible and Re-cyclable Electronics. Adv. Funct. Mater. 2019, 29, 1808739. [Google Scholar] [CrossRef]
- Yang, Q.; Lee, S.; Xue, Y.; Yan, Y.; Liu, T.; Kang, S.; Lee, Y.J.; Lee, S.H.; Seo, M.; Lu, D.; et al. Materials, Mechanics Designs, and Bioresorbable Multisensor Platforms for Pressure Monitoring in the Intracranial Space. Adv. Funct. Mater. 2020, 30, 1910718. [Google Scholar] [CrossRef]
- Han, W.B.; Lee, J.H.; Shin, J.-W.; Hwang, S.-W. Advanced Materials and Systems for Biodegradable, Transient Electronics. Adv. Mater. 2020, 32, 2002211. [Google Scholar] [CrossRef]
- Williams, N.X.; Bullard, G.; Brooke, N.; Therien, M.J.; Franklin, A.D. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat. Electron. 2021, 4, 261–268. [Google Scholar] [CrossRef]
- Lee, D.-M.; Rubab, N.; Hyun, I.; Kang, W.; Kim, Y.-J.; Kang, M.; Choi, B.; Kim, S.-W. Ultrasound-mediated triboelectric nan-ogenerator for powering on-demand transient electronics. Sci. Adv. 2022, 8, abl8423. [Google Scholar] [CrossRef]
- Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Martinez, A.W.; Song, C.; Herrault, F.; Allen, M.G. A Microfabricated Wireless RF Pressure Sensor Made Completely of Biodegradable Materials. J. Microelectromechanical Syst. 2013, 23, 4–13. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.; Zhang, Y.; Chen, M. High-Voltage Wave Induced a Unique Structured Percolation Network with a Negative Gauge Factor. ACS Appl. Mater. Interfaces 2022, 14, 5661–5672. [Google Scholar] [CrossRef] [PubMed]
- Rotbaum, Y.; Puiu, C.; Rittel, D.; Domingos, M. Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures. Mater. Sci. Eng. C 2019, 96, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.B.; Parashar, P.; Shen, L.C.; Chen, A.R.; Huang, Y.T.; Pal, A.; Lim, K.C.; Wei, P.H.; Kao, F.C.; Hu, J.J.; et al. A tribo-electric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy 2023, 111, 108397. [Google Scholar] [CrossRef]
- Du, J.; Armstrong, S.R.; Baer, E. Co-extruded multilayer shape memory materials: Comparing layered and blend architectures. Polymer 2013, 54, 5399–5407. [Google Scholar] [CrossRef]
- Moore, M.J.; Lam, Y.T.; Santos, M.; Tan, R.P.; Yang, N.; Hung, J.; Li, Z.; Kilian, K.A.; Rnjak-Kovacina, J.; Pitts, J.B.; et al. Evaluation of the Immune Response to Chitosan-graft-poly(caprolactone) Biopolymer Scaffolds. ACS Biomater. Sci. Eng. 2023, 9, 3320–3334. [Google Scholar] [CrossRef]
- Gniesmer, S.; Brehm, R.; Hoffmann, A.; De Cassan, D.; Menzel, H.; Hoheisel, A.-L.; Glasmacher, B.; Willbold, E.; Reifenrath, J.; Wellmann, M.; et al. In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber. J. Tissue Eng. Regen. Med. 2019, 13, 1190–1202. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Wang, X.-C.; Peng, X.-F.; Turng, L.-S. Shish-Kebab-Structured Poly(ε-Caprolactone) Nanofibers Hierarchically Decorated with Chitosan–Poly(ε-Caprolactone) Copolymers for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 6955–6965. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, W.; Badv, M.; Moshaverinia, A.; Weiss, P.S. Modified Poly(ε-caprolactone) with Tunable Degradability and Improved Biofunctionality for Regenerative Medicine. ACS Mater. Au 2023, 3, 540–547. [Google Scholar] [CrossRef]
- Lönnberg, H.; Larsson, K.; Lindström, T.; Hult, A.; Malmström, E. Synthesis of polycaprolactone-grafted microfibrillated cel-lulose for use in novel bionanocomposites–influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces 2011, 3, 1426–1433. [Google Scholar] [CrossRef]
- Peterson, G.; Larsen, M.; Ganter, M.; Storti, D.; Boydston, A. 3D-printed mechanochromic materials. ACS Appl. Mater. Interfaces 2014, 7, 577–583. [Google Scholar] [CrossRef]
- Azari, A.; Golchin, A.; Maymand, M.M.; Mansouri, F.; Ardeshirylajimi, A. Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application. Adv. Pharm. Bull. 2022, 12, 658–672. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Keim, W. Ionic liquids—New ‘solutions’ for transition metal catalysis. Angew. Chem.—Int. Ed. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Macfarlane, D.R.; Tachikawa, N.; Forsyth, M.; Pringle, J.M.; Howlett, P.C.; Elliott, G.D.; Davis, J.H.; Watanabe, M.; Simon, P.; Angell, C.A. Energy applications of ionic liquids. Energy Environ. Sci. 2014, 7, 232–250. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, Y.-P.; Liu, K.-Y.; Yu, W.; Li, G.-X.; Meng, C.-Z.; Guo, S.-J. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Dobashi, Y.; Yao, D.; Petel, Y.; Nguyen, T.N.; Sarwar, M.S.; Thabet, Y.; Ng, C.L.W.; Glitz, E.S.; Nguyen, G.T.M.; Plesse, C.; et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels. Science 2022, 376, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Heng, W.; Solomon, S.; Gao, W. Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Adv. Mater. 2022, 34, 2107902. [Google Scholar] [CrossRef] [PubMed]
- Fakharuddin, A.; Li, H.; Giacomo, F.; Zhang, T.; Gasparini, N.; Elezzabi, A.; Mohanty, A.; Ramadoss, A.; Ling, J.; Vasilopoulou, M. Fiber-shaped electronic devices. Adv. Energy Mater. 2021, 11, 2101443. [Google Scholar] [CrossRef]
- Li, F.; Cai, X.; Liu, G.; Xu, H.; Chen, W. Piezoionic SnSe Nanosheets-Double Network Hydrogel for Self-Powered Strain Sensing and Energy Harvesting. Adv. Funct. Mater. 2023, 33, 2300701. [Google Scholar] [CrossRef]
- Odent, J.; Baleine, N.; Biard, V.; Dobashi, Y.; Vancaeyzeele, C.; Nguyen, G.T.M.; Madden, J.D.W.; Plesse, C.; Raquez, J. 3D-Printed Stacked Ionic Assemblies for Iontronic Touch Sensors. Adv. Funct. Mater. 2022, 33, 2210485. [Google Scholar] [CrossRef]
- Li, M.; Qiao, J.; Zhu, C.; Hu, Y.; Wu, K.; Zeng, S.; Yang, W.; Zhang, H.; Wang, Y.; Wu, Y.; et al. Gel-Electrolyte-Coated Carbon Nanotube Yarns for Self-Powered and Knittable Piezoionic Sensors. ACS Appl. Electron. Mater. 2021, 3, 944–954. [Google Scholar] [CrossRef]
- Homayounfar, S.; Kiaghadi, A.; Ganesan, D.; Andrew, T. Pression: An all-fabric piezoionic pressure sensor for extracting physiological metrics in both static and dynamic contexts. J. Electrochem. Soc. 2021, 168, 017515. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y. Ionic skin: From imitating natural skin to beyond. Ind. Chem. Mater. 2023, 1, 224–239. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Cui, J.; Samal, S.K.; Xiong, R.; Huang, C. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review. Sep. Purif. Technol. 2021, 277, 119623. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Graziani, S.; Pollicino, A.; Trigona, C. Performance Characterization of a Biodegradable Deformation Sensor Based on Bacterial Cellulose. IEEE Trans. Instrum. Meas. 2020, 69, 2561–2569. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Graziani, S.; Pollicino, A.; Trigona, C. Green Inertial Sensors based on Bacterial Cellulose. In Proceedings of the SAS IEEE Sensors Applications Symposium, Sophia Antipolis, France, 11–13 March 2019; p. 8706112. [Google Scholar]
- Caponetto, R.; Di Pasquale, G.; Graziani, S.; Murgano, E.; Pollicino, A. Realization of green fractional order devices by using bacterial cellulose. AEU—Int. J. Electron. Commun. 2019, 112, 152927. [Google Scholar] [CrossRef]
- Kurukunda, S.; Graziani, S.; Trigona, C.; Di Pasquale, G.; Pollicino, A.; Põhako-Esko, K.; Aabloo, A. A Comparative Investi-gation of Deformation Transducers Based on Bacterial Cellulose and Different Ionic Liquids. In Proceedings of the 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Kuala Lumpur, Malaysia, 22–25 May 2023; pp. 1–5. [Google Scholar]
- McEwen, A.B.; Ngo, H.L.; LeCompte, K.; Goldman, J.L. Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications. J. Electrochem. Soc. 1999, 146, 1687–1695. [Google Scholar] [CrossRef]
- Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules 2001, 2, 288–294. [Google Scholar] [CrossRef] [PubMed]
PCL | PCL/EMIMBF4 | PCL/EMIMBF4/Ag | ||
---|---|---|---|---|
E′ (Pa) | 1 Hz | 9.8 × 105 | 1.2 × 106 | 6.6 × 108 |
10 Hz | 1.1 × 106 | 1.4 × 106 | 8.1 × 108 | |
50 Hz | 1.6 × 106 | 1.5 × 106 | 9.8 × 108 | |
E″ (Pa) | 1 Hz | 8.8 × 104 | 1.3 × 105 | 8.7 × 107 |
10 Hz | 8.9 × 104 | 1.9 × 105 | 1.3 × 108 | |
50 Hz | 3.3 × 105 | 3.3 × 105 | 1.6 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pasquale, G.; Graziani, S.; Latteri, A.; Pollicino, A.; Trigona, C. Poly(ε-caprolactone)–Ionic Liquid Composite as Piezoionic Mechanical Sensor. Appl. Sci. 2024, 14, 1085. https://doi.org/10.3390/app14031085
Di Pasquale G, Graziani S, Latteri A, Pollicino A, Trigona C. Poly(ε-caprolactone)–Ionic Liquid Composite as Piezoionic Mechanical Sensor. Applied Sciences. 2024; 14(3):1085. https://doi.org/10.3390/app14031085
Chicago/Turabian StyleDi Pasquale, Giovanna, Salvatore Graziani, Alberta Latteri, Antonino Pollicino, and Carlo Trigona. 2024. "Poly(ε-caprolactone)–Ionic Liquid Composite as Piezoionic Mechanical Sensor" Applied Sciences 14, no. 3: 1085. https://doi.org/10.3390/app14031085
APA StyleDi Pasquale, G., Graziani, S., Latteri, A., Pollicino, A., & Trigona, C. (2024). Poly(ε-caprolactone)–Ionic Liquid Composite as Piezoionic Mechanical Sensor. Applied Sciences, 14(3), 1085. https://doi.org/10.3390/app14031085