The Use of Rapeseed Husks to Remove Acidic and Basic Dyes from Aquatic Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rapeseed Husks
2.2. Sorb—Ates (Dyes)
2.3. Chemical Reagents
- Hydrochloric acid (HCl)—37%—(solution pH correction),
- Sodium hydroxide (NaOH) > 99.9%—micropellets—(solution pH correction),
2.4. Laboratory Equipment
- FT/IR-4700LE FT-IR Spectrometer with a single reflection ATR attachment (JASCO International, Tokyo, Japan)—for preparing the sorbent’s FTIR spectra;
- UV-3100 PC—UV/Visible spectrophotometer (VWR spectrophotometers, VWR International LLC., Mississauga, ON, Canada)—for determining the concentration of dye in solutions;
- HI 221 pH-meter (Hanna Instruments, Woonsocket, RI, USA)—for the measurement and correction of the solutions pH;
- Multi-Channel Stirrer MS-53M (JEIO TECH, Daejeon, Republic of Korea)—for the process of sorption;
- Gemini VI (Micromeritics, Norcross, GA, USA)—for the measurements of porosity and surface area of the sorbent.
2.5. Sorbent Preparation—Rape Seed Husks (RH)
2.6. Analyses of pH Effect on Dye Sorption Effectiveness
2.7. Analyses of Dye Sorption Kinetics
2.8. Analyses of the Maximum Sorption Capacity of RH
2.9. Computation Methods
- QS—mass of sorbed dye [mg/g]
- C0—initial concentration of dye [mg/L]
- CS—concentration of dye after sorption [mg/L]
- V—volume of the solution [L]
- m—mass of the sorbent [g].
- Q—instantaneous value of the sorbed dye [mg/g]
- qe—the amount of dye sorbed at the equilibrium state [mg/g]
- t—time of sorption [min]
- k1—pseudo-first order adsorption rate constant [1/min]
- k2—pseudo-second order adsorption rate constant [g/(mg·min)]
- kid—intraparticular diffusion model adsorption rate constant [mg/(g·min0.5)].
- Qs—mass of the sorbed dye [mg/g]
- Qmax—maximum sorption capacity in Langmuir equation [mg/g]
- b1—maximum sorption capacity of sorbent (type I active sites) [mg/g]
- b2—maximum sorption capacity of sorbent (type II active sites) [mg/g]
- KC—constant in Langmuir equation [L/mg]
- K1, K2—constants in Langmuir 2 equation [L/mg]
- K—the equilibrium sorption constant in Freundlich model
- n—Freundlich equilibrium constant
- C—concentration of dye remaining in the solution [mg/L]
- n—constant in the Freundlich model.
3. Results and Discussion
3.1. Characteristics of RH (FTIR, Surface)
3.2. The Effect of pH on the Effectiveness of Dye Sorption onto RH
3.3. The Kinetics of Dye Sorption onto RH
3.4. Maximum Sorption Capacity of RH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Park, H.N.; Won, S.W. Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2. Molecules 2021, 26, 1519. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Villabona-Ortíz, Á.; Ortega-Toro, R. Removal of Metals and Dyes in Water Using Low-Cost Agro-Industrial Waste Materials. Appl. Sci. 2023, 13, 8481. [Google Scholar] [CrossRef]
- Garg, A.; Chopra, L. Dye Waste: A Significant Environmental Hazard. Mater. Today Proc. 2022, 48, 1310–1315. [Google Scholar] [CrossRef]
- Alsukaibi, A.K.D. Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes 2022, 10, 1968. [Google Scholar] [CrossRef]
- Sharma, J.; Sharma, S.; Soni, V. Classification and Impact of Synthetic Textile Dyes on Aquatic Flora: A Review. Reg. Stud. Mar. Sci. 2021, 45, 101802. [Google Scholar] [CrossRef]
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef] [PubMed]
- Ouakouak, A.; Abdelhamid, M.; Thouraya, B.; Chahinez, H.O.; Hocine, G.; Hamdi, N.; Syafiuddin, A.; Boopathy, R. Development of a Novel Adsorbent Prepared from Dredging Sediment for Effective Removal of Dye in Aqueous Solutions. Appl. Sci. 2021, 11, 10722. [Google Scholar] [CrossRef]
- Belda Marín, C.; Egles, C.; Landoulsi, J.; Guénin, E. Silk Bionanocomposites for Organic Dye Absorption and Degradation. Appl. Sci. 2022, 12, 9152. [Google Scholar] [CrossRef]
- Rane, A.; Joshi, S.J. Biodecolorization and Biodegradation of Dyes: A Review. Open Biotechnol. J. 2021, 15, 97–108. [Google Scholar] [CrossRef]
- Pimentel, C.H.; Freire, M.S.; Gómez-Díaz, D.; González-Álvarez, J. Removal of Wood Dyes from Aqueous Solutions by Sorption on Untreated Pine (Pinus radiata) Sawdust. Cellulose 2023, 30, 4587–4608. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Hassan Shah, M.U.; Bhaskar Reddy, A.V.; Aminabhavi, T.M. Recent Advances in the Removal of Dyes from Wastewater Using Low-Cost Adsorbents. J. Environ. Manag. 2022, 321, 115981. [Google Scholar] [CrossRef]
- Husien, S.; El-taweel, R.M.; Salim, A.I.; Fahim, I.S.; Said, L.A.; Radwan, A.G. Review of Activated Carbon Adsorbent Material for Textile Dyes Removal: Preparation, and Modelling. Curr. Res. Green Sustain. Chem. 2022, 5, 100325. [Google Scholar] [CrossRef]
- Bhat, S.; Uthappa, U.T.; Sadhasivam, T.; Altalhi, T.; Soo Han, S.; Kurkuri, M.D. Abundant Cilantro Derived High Surface Area Activated Carbon (AC) for Superior Adsorption Performances of Cationic/Anionic Dyes and Supercapacitor Application. Chem. Eng. J. 2023, 459, 141577. [Google Scholar] [CrossRef]
- Farhadi, A.; Ameri, A.; Tamjidi, S. Application of Agricultural Wastes as a Low-Cost Adsorbent for Removal of Heavy Metals and Dyes from Wastewater: A Review Study. Phys. Chem. Res. 2021, 9, 211–226. [Google Scholar] [CrossRef]
- Sulyman, M.; Namiesnik, J.; Gierak, A. Low-Cost Adsorbents Derived from Agricultural By-Products/Wastes for Enhancing Contaminant from Wastewater: A Review. Pol. J. Environ. Stud. 2017, 26, 479–510. [Google Scholar] [CrossRef]
- Cretescu, I.; Lupascu, T.; Buciscanu, I.; Balau-Mindru, T.; Soreanu, G. Low-Cost Sorbents for the Removal of Acid Dyes from Aqueous Solutions. Process Saf. Environ. Prot. 2017, 108, 57–66. [Google Scholar] [CrossRef]
- Ahmed, F.S.; Abdul Razak, A.A.; Muslim, M.A. The Use of Inexpensive Sorbents to Remove Dyes from Wastewater—A Review. Eng. Technol. J. 2022, 40, 498–515. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- Jafarian Asl, P.; Niazmand, R. Bioactive Phytochemicals from Rapeseed (Brassica napus) Oil Processing By-Products. In Reference Series in Phytochemistry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 27–47. [Google Scholar]
- Cartea, E.; De Haro-Bailón, A.; Padilla, G.; Obregón-Cano, S.; Del Rio-Celestino, M.; Ordás, A. Seed Oil Quality of Brassica napus and Brassica rapa Germplasm from Northwestern Spain. Foods 2019, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Fattah, I.M.R.; Ong, H.C.; Mahlia, T.M.I. Biodiesel Production from Transesterification of Australian Brassica napus L. Oil: Optimisation and Reaction Kinetic Model Development. Environ. Dev. Sustain. 2023, 25, 12247–12272. [Google Scholar] [CrossRef]
- Carré, P.; Quinsac, A.; Citeau, M.; Fine, F. A Re-Examination of the Technical Feasibility and Economic Viability of Rapeseed Dehulling. OCL—Oilseeds Fats 2015, 22, D304. [Google Scholar] [CrossRef]
- Boucher, J.; Chabloz, C.; Lex, O.; Marison, I.W. Oleaginous Seeds, Press-Cake and Seed Husks for the Biosorption of Metals. J. Water Supply Res. Technol.—AQUA 2008, 57, 489–499. [Google Scholar] [CrossRef]
- Carre, P.; Citeau, M.; Robin, G.; Estorges, M. Hull Content and Chemical Composition of Whole Seeds, Hulls and Germs in Cultivars of Rapeseed (Brassica napus). OCL 2016, 23, A302. [Google Scholar] [CrossRef]
- VanDer Kamp, K.A.; Qiang, D.; Aburub, A.; Wurster, D.E. Modified Langmuir-like Model for Modeling the Adsorption from Aqueous Solutions by Activated Carbons. Langmuir 2005, 21, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Rehman, Z.U.; Vrouwenvelder, J.S.; Saikaly, P.E. Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates from Biofouled Reverse Osmosis Membranes. Front. Microbiol. 2021, 12, 668761. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret Ftir Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Sulieman, A.A.; Zhu, K.X.; Peng, W.; Hassan, H.A.; Obadi, M.; Ahmed, M.I.; Zhou, H.M. Effect of Agaricus bisporus Polysaccharide Flour and Inulin on the Antioxidant and Structural Properties of Gluten-Free Breads. J. Food Meas. Charact. 2019, 13, 1884–1897. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 09, 303–310. [Google Scholar] [CrossRef]
- Rana, R.; Langenfeld-Heyser, R.; Finkeldey, R.; Polle, A. FTIR Spectroscopy, Chemical and Histochemical Characterisation of Wood and Lignin of Five Tropical Timber Wood Species of the Family of Dipterocarpaceae. Wood Sci. Technol. 2010, 44, 225–242. [Google Scholar] [CrossRef]
- Stępień, E.; Kamińska, A.; Surman, M.; Karbowska, D.; Wróbel, A.; Przybyło, M. Fourier-Transform InfraRed (FT-IR) Spectroscopy to Show Alterations in Molecular Composition of EV Subpopulations from Melanoma Cell Lines in Different Malignancy. Biochem. Biophys. Rep. 2021, 25, 100888. [Google Scholar] [CrossRef]
- Kukula-Koch, W.; Grzybek, M.; Strachecka, A.; Jaworska, A.; Ludwiczuk, A. ATR-FTIR-Based Fingerprinting of Some Cucurbitaceae Extracts: A Preliminary Study. Acta Soc. Bot. Pol. 2018, 87. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Qualitative Assessment of Soil Carbon in a Rehabilitated Forest Using Fourier Transform Infrared Spectroscopy. Sci. World J. 2011, 11, 532–545. [Google Scholar] [CrossRef]
- Multescu, M.; Marinas, I.C.; Susman, I.E.; Belc, N. Byproducts (Flour, Meals, and Groats) from the Vegetable Oil Industry as a Potential Source of Antioxidants. Foods 2022, 11, 253. [Google Scholar] [CrossRef]
- Sivakumar, S.; Khatiwada, C.P.; Sivasubramanian, J.; Jini, P.; Prabu, N.; Venkateson, A.; Soundararajan, P. FT-IR Study of Green Tea Leaves and Their Diseases of Arunachal Pradesh, North East, India. Afr. J. Parasitol. Res. 2013, 3, 166–172. [Google Scholar]
- Navarro, R.; Guzmán, J.; Saucedo, I.; Revilla, J.; Guibal, E. Recovery of Metal Ions by Chitosan: Sorption Mechanisms and Influence of Metal Speciation. Macromol. Biosci. 2003, 3, 552–561. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Brym, S.; Kopeć, L. Use of Aminated Hulls of Sunflower Seeds for the Removal of Anionic Dyes from Aqueous Solutions. Int. J. Environ. Sci. Technol. 2020, 17, 1211–1224. [Google Scholar] [CrossRef]
- Kuczajowska-Zadrożna, M.; Filipkowska, U.; Jóźwiak, T.; Szymczyk, P. The Use of Polysaccharides for Acid Red 18 Anionic Dye Removal from Aqueous Solutions. Prog. Chem. Appl. Chitin Deriv. 2017, 22, 106–117. [Google Scholar] [CrossRef]
- Chaleshtori, A.N.; Meghadddam, F.M.; Sadeghi, M.M.; Rahimi, R.R.; Hemati, S.; Ahmadi, A. Removal of Acid Red 18 (Azo-Dye) from Aqueous Solution by Adsorption onto Activated Charcoal Prepared from Almond Shell. J. Environ. Sci. Manag. 2017, 20, 9–16. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption Characteristics for the Removal of a Toxic Dye, Tartrazine from Aqueous Solutions by a Low Cost Agricultural by-Product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef]
- Filipkowska, U.; Kuczajowska-Zadrożna, M.; Jóźwiak, T.; Szymczyk, P.; Kaczyński, A. Adsorption of Basic Yellow 28 (BY 28) and Acid Yellow 23 (AY 23) Dyes onto Chitin. Prog. Chem. Appl. Chitin Deriv. 2015, 20, 34–42. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Zajko, P. Use of Citrus Fruit Peels (Grapefruit, Mandarin, Orange, and Lemon) as Sorbents for the Removal of Basic Violet 10 and Basic Red 46 from Aqueous Solutions. Desalination Water Treat. 2019, 163, 385–397. [Google Scholar] [CrossRef]
- Deniz, F.; Saygideger, S.D. Removal of a Hazardous Azo Dye (Basic Red 46) from Aqueous Solution by Princess Tree Leaf. Desalination 2011, 268, 6–11. [Google Scholar] [CrossRef]
- Abdul Halim, H.N.; Mee, K.L.K. Adsorption of Basic Red 46 by Granular Activated Carbon in a Fixed- Bed Column. Int. Conf. Environ. Ind. Innov. 2011, 12, 263–267. [Google Scholar]
- Jóźwiak, T.; Filipkowska, U.; Struk-Sokołowska, J.; Bryszewski, K.; Trzciński, K.; Kuźma, J.; Ślimkowska, M. The Use of Spent Coffee Grounds and Spent Green Tea Leaves for the Removal of Cationic Dyes from Aqueous Solutions. Sci. Rep. 2021, 11, 9584. [Google Scholar] [CrossRef]
- Kurowska, P.; Jóźwiak, T.; Filipkowska, U.; Bakuła, T. The use of chitin in the moults and exoskeletons of mealworms (Tenebrio molitor) to remove cationic dyes from aqueous solutions. Prog. Chem. Appl. Chitin Deriv. 2023, 28, 56–74. [Google Scholar] [CrossRef]
- Mohammadi, M.; Hassani, A.J.; Mohamed, A.R.; Najafpour, G.D. Removal of Rhodamine b from Aqueous Solution Using Palm Shell-Based Activated Carbon: Adsorption and Kinetic Studies. J. Chem. Eng. Data 2010, 55, 5777–5785. [Google Scholar] [CrossRef]
- Shokoohi, R.; Vatanpoor, V.; Zarrabi, M.; Vatani, A. Adsorption of Acid Red 18 (AR18) by Activated Carbon from Poplar Wood—A Kinetic and Equilibrium Study. J. Chem. 2010, 7, 65–72. [Google Scholar] [CrossRef]
- de Souza Macedo, J.; da Costa Júnior, N.B.; Almeida, L.E.; da Silva Vieira, E.F.; Cestari, A.R.; de Fátima Gimenez, I.; Villarreal Carreño, N.L.; Barreto, L.S. Kinetic and Calorimetric Study of the Adsorption of Dyes on Mesoporous Activated Carbon Prepared from Coconut Coir Dust. J. Colloid Interface Sci. 2006, 298, 515–522. [Google Scholar] [CrossRef]
- Laasri, L.; Elamrani, M.K.; Cherkaoui, O. Removal of Two Cationic Dyes from a Textile Effluent by Filtration-Adsorption on Wood Sawdust. Environ. Sci. Pollut. Res. 2007, 14, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Józwiak, T.; Filipkowska, U.; Bugajska, P.; Kalkowski, T. The Use of Coconut Shells for the Removal of Dyes from Aqueous Solutions. J. Ecol. Eng. 2018, 19, 129–135. [Google Scholar] [CrossRef]
- Namasivayam, C.; Dinesh Kumar, M.; Selvi, K.; Ashruffunissa Begum, R.; Vanathi, T.; Yamuna, R.T. “Waste” Coir Pith—A Potential Biomass for the Treatment of Dyeing Wastewaters. Biomass Bioenergy 2001, 21, 477–483. [Google Scholar] [CrossRef]
- Shen, K.; Gondal, M.A. Removal of Hazardous Rhodamine Dye from Water by Adsorption onto Exhausted Coffee Ground. J. Saudi Chem. Soc. 2017, 21, S120–S127. [Google Scholar] [CrossRef]
- Cheng, C.S.; Deng, J.; Lei, B.; He, A.; Zhang, X.; Ma, L.; Li, S.; Zhao, C. Toward 3D Graphene Oxide Gels Based Adsorbents for High-Efficient Water Treatment via the Promotion of Biopolymers. J. Hazard. Mater. 2013, 263, 467–478. [Google Scholar] [CrossRef]
- Okoniewska, E. Removal of the Dye of Acid Bright Red 4R from Water Solutions on Activated Carbons. Eng. Prot. Environ. 2016, 19, 331–340. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Moradi, E.; Zazouli, M.A.; Moradi, E. Adsorption Acid Red18 Dye Using Sargassum Glaucescens Biomass from Aqueous Solutions. Iran. J. Health Sci. 2015, 3, 7–13. [Google Scholar] [CrossRef]
- Jibril, M.; Noraini, J.; Poh, L.S.; Mohammed Evuti, A. Removal of Colour from Waste Water Using Coconut Shell Activated Carbon (CSAC) and Commercial Activated Carbon (CAC). J. Teknol. 2012, 60, 15–19. [Google Scholar] [CrossRef]
- Azmi, N.A.I.; Zainudin, N.F.; Ali, U.F.M. Adsorption of Basic Red 46 Using Sea Mango (Cerbera odollam) Based Activated Carbon. AIP Conf. Proc. 2015, 1660, 070068. [Google Scholar] [CrossRef]
- Madeła, M.; Krzemińska, D.; Neczaj, E. Wpływ Procesu Fentona Na Skuteczność Usuwania Zanieczyszczeń Ze Ścieków Przemysłowych Na Węglach Aktywnych. Technol. Wody 2014, 5, 46–50. [Google Scholar]
- Yeddou, N.; Bensmaili, A. Kinetic Models for the Sorption of Dye from Aqueous Solution by Clay-Wood Sawdust Mixture. Desalination 2005, 185, 499–508. [Google Scholar] [CrossRef]
- EL Haddad, M.; Rachid, M.; Slimani, R.; Nabil, S.; Ridaoui, M.; Lazar, S. Adsorptive removal of a cationic dye—Basic red 46—From aqueous solutions using animal bone meal. J. Eng. Stud. Res. 2012, 18, 43. [Google Scholar]
- Porkodi, K.; Vasanth Kumar, K. Equilibrium, Kinetics and Mechanism Modeling and Simulation of Basic and Acid Dyes Sorption onto Jute Fiber Carbon: Eosin Yellow, Malachite Green and Crystal Violet Single Component Systems. J. Hazard. Mater. 2007, 143, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, G.; Juang, R.S.; Lee, D.J. Use of Cellulose-Based Wastes for Adsorption of Dyes from Aqueous Solutions. J. Hazard. Mater. 2002, 92, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Zamouche, M.; Hamdaoui, O. Sorption of Rhodamine B by Cedar Cone: Effect of PH and Ionic Strength. Energy Procedia 2012, 18, 1228–1239. [Google Scholar] [CrossRef]
- Sureshkumar, M.V.; Namasivayam, C. Adsorption Behavior of Direct Red 12B and Rhodamine B from Water onto Surfactant-Modified Coconut Coir Pith. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 277–283. [Google Scholar] [CrossRef]
- Parab, H.; Sudersanan, M.; Shenoy, N.; Pathare, T.; Vaze, B. Use of Agro-Industrial Wastes for Removal of Basic Dyes from Aqueous Solutions. Clean 2009, 37, 963–969. [Google Scholar] [CrossRef]
- Khan, T.A.; Sharma, S.; Ali, I. Adsorption of Rhodamine B Dye from Aqueous Solution onto Acid Activated Mango (Magnifera indica) Leaf Powder: Equilibrium, Kinetic and Thermodynamic Studies. J. Toxicol. Environ. Health Sci. 2011, 3, 286–297. [Google Scholar]
Dye Name | Acid Red 18 (AR18) | Acid Yellow 23 (AY23) | Basic Red 46 (BR46) | Basic Violet 10 (BV10) (BV10) |
---|---|---|---|---|
Structural formula | ||||
Chemical formula | C20H11N2Na3O10S3 | C16H9N4Na3O9S2 | C18H21BrN6 | C28H31ClN2O3 |
Molecular weight | 604.5 g/mol | 534.4 g/mol | 321.4 g/mol | 479.0 g/mol |
Dye class | single azo dye | single azo dye | single azo dye | xanthene dye |
Dye type | anionic (acidic) | anionic (acidic) | cationic (basic) | cationic (basic) |
λmax | 509 nm | 428 nm | 530 nm | 554 nm |
Uses | dyeing wool, silk, polyamide fiber | dyeing wool, silk, polyamide fiber | dyeing leather, paper, wool, and acrylic fibers | dyeing textiles, paper, leather |
Hazards | may cause irritation; may be harmful if swallowed | may cause skin irritation, may cause gastrointestinal irritation | caustic, toxic, hazardous to the aquatic environment | toxic, fluorescent, carcinogenic; can induce skin and eye allergies |
Other trade names | Acid Brilliant Red 3R, Acid Scarlet 3R, Red 3R | Tartrazine, Acid Tartrazine, Aizen Tartrazine | Anilan Red GRL, Basic Red X-GRL, Cationic Red X-GRL | Rhodamine B, Basic Red RB, Violet B. |
Dye content in the commercial product | 75% | 85% | 80% | 80% |
Dye | Dye Conc. | Pseudo-First Order Model | Pseudo-Second Order Model | Exp. Data | Equilibrium Time | ||||
---|---|---|---|---|---|---|---|---|---|
k1 | qe,cal. | R2 | k2 | qe,cal. | R2 | qe,exp. | [min] | ||
[mg/L] | [1/min] | [mg/g] | - | [g/mg·min] | [mg/g] | - | [mg/g] | ||
AR18 | 50 | 0.0453 | 8.01 | 0.9953 | 0.0072 | 8.89 | 0.9964 | 8.14 | 150 |
100 | 0.0497 | 14.97 | 0.9846 | 0.0044 | 16.48 | 0.9993 | 15.41 | 150 | |
250 | 0.0670 | 34.50 | 0.9942 | 0.0029 | 37.20 | 0.9965 | 35.07 | 120 | |
AY23 | 50 | 0.0548 | 7.37 | 0.9883 | 0.0103 | 8.06 | 0.9992 | 7.56 | 150 |
100 | 0.0621 | 14.40 | 0.9889 | 0.0062 | 15.62 | 0.9992 | 14.77 | 150 | |
250 | 0.0733 | 29.44 | 0.9759 | 0.0039 | 31.55 | 0.9922 | 29.82 | 120 | |
BR46 | 50 | 0.0497 | 8.91 | 0.9704 | 0.0075 | 9.80 | 0.9964 | 9.24 | 180 |
100 | 0.0586 | 17.55 | 0.9721 | 0.0047 | 19.13 | 0.9979 | 18.27 | 180 | |
250 | 0.0492 | 38.59 | 0.9732 | 0.0017 | 42.47 | 0.9968 | 39.89 | 150 | |
BV10 | 20 | 0.0396 | 2.49 | 0.9663 | 0.0194 | 2.80 | 0.9944 | 2.61 | 180 |
50 | 0.0396 | 5.63 | 0.9675 | 0.0088 | 6.30 | 0.9936 | 5.85 | 180 | |
100 | 0.0478 | 9.54 | 0.9738 | 0.0066 | 10.54 | 0.9971 | 9.87 | 150 |
Dye | Dye Conc. | Phase I | Phase II | Phase III | ||||||
---|---|---|---|---|---|---|---|---|---|---|
kd1 * | Durat. | R2 | kd2 * | Durat. | R2 | kd3 * | Durat. | R2 | ||
[mg/L] | [*] | [min] | - | [*] | [min] | - | [*] | [min] | - | |
AR18 | 50 | 1.076 | 30 | 0.9996 | 0.655 | 30 | 0.9975 | 0.161 | 90 | 0.9913 |
100 | 2.122 | 30 | 0.9990 | 0.967 | 30 | 0.9969 | 0.385 | 90 | 0.9567 | |
250 | 5.444 | 30 | 0.9964 | 1.458 | 30 | 0.9837 | 0.520 | 60 | 0.(9) | |
AY23 | 50 | 1.066 | 30 | 0.9964 | 0.469 | 30 | 0.9990 | 0.150 | 90 | 0.9866 |
100 | 2.238 | 30 | 0.9983 | 0.752 | 30 | 0.9993 | 0.253 | 90 | 0.9504 | |
250 | 4.849 | 30 | 0.9973 | 0.951 | 30 | 0.9973 | 0.222 | 60 | 0.(9) | |
BR46 | 50 | 1.319 | 20 | 0.9931 | 0.555 | 70 | 0.9846 | 0.164 | 90 | 0.9718 |
100 | 2.854 | 20 | 0.9990 | 0.932 | 70 | 0.9907 | 0.285 | 90 | 0.9959 | |
250 | 5.758 | 20 | 0.9983 | 2.386 | 70 | 0.9939 | 0.799 | 60 | 0.9949 | |
BV10 | 20 | 0.342 | 20 | 0.9999 | 0.155 | 70 | 0.9966 | 0.065 | 90 | 0.9801 |
50 | 0.774 | 20 | 0.9996 | 0.382 | 70 | 0.9994 | 0.126 | 90 | 0.9822 | |
100 | 1.412 | 20 | 0.9998 | 0.575 | 70 | 0.9959 | 0.233 | 60 | 0.9996 |
Dye | Langmuir 1 Model | Langmuir 2 Model | Freundlich Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qmax | Kc | R2 | Qmax | b1 | K1 | b2 | K2 | R2 | k | n | R2 | |
[mg/g] | [L/mg] | - | [mg/g] | [mg/g] | [L/mg] | [mg/g] | [L/mg] | - | - | - | - | |
AR18 | 49.37 | 0.0271 | 0.9895 | 49.37 | 23.60 | 0.0271 | 25.77 | 0.0271 | 0.9895 | 5.754 | 0.375 | 0.8970 |
AY23 | 41.52 | 0.0231 | 0.9894 | 41.52 | 20.76 | 0.0231 | 20.76 | 0.0231 | 0.9894 | 4.511 | 0.378 | 0.9054 |
BR46 | 55.59 | 0.0529 | 0.9986 | 59.07 | 12.22 | 0.0086 | 46.85 | 0.0665 | 0.9993 | 9.209 | 0.337 | 0.9155 |
BV10 | 19.78 | 0.0209 | 0.9995 | 20.93 | 10.08 | 0.0329 | 10.85 | 0.0106 | 0.9997 | 1.314 | 0.493 | 0.9793 |
Dye | Sorbent | Sorption Capacity [mg/g] | pH of Sorption | Duration of Sorption [min] | References |
---|---|---|---|---|---|
AR18 | Activated carbon WG-12 | 100 | – | – | [55] |
Activated carbon from almond shell | 51.6 | 2 | 60 | [39] | |
Rapeseed husks | 49.4 | 2 | 150 | This work | |
Chitosan flakes | 39.9 | 4 | 180 | [38] | |
Cellulose | 29.7 | 6 | 120 | [38] | |
Activated Carbon from Poplar Wood | 29.41 | 5 | 120 | [48] | |
Sargassum glaucescens biomass | 15.0 | 6 | 60 | [56] | |
Agar | 13.6 | 6 | 120 | [38] | |
Activated carbon from wood (polar tree) | 3.9 | 7 | 120 | [48] | |
Sunflower seed hulls | 1.8 | 3 | 90 | [37] | |
Coconut shells | 0.66 | 2 | 45 | [51] | |
AY23 | Activated carbon from coconut coir | 132.07 | 6 | 120 | [49] |
Rapeseed husks | 41.52 | 2 | 150 | This work | |
Chitin flakes | 24.2 | 2 | 120 | [41] | |
Sawdust | 4.7 | 3 | 70 | [40] | |
Sunflower seed hulls | 2.3 | 3 | 90 | [37] | |
Coconut shell activated carbon | 2.3 | 1.7 | 60 | [57] | |
Coconut shells | 0.53 | 2 | 45 | [51] | |
BR46 | Granular activated carbon | 333.3 | 8 | <60 | [44] |
Activated carbon from biomass | 65.7 | 7 | 90 | [58] | |
Rapeseed husks | 59.1 | 6 | 180 | This work | |
Spent green tea leaves | 58 | 6 | 240 | [45] | |
Lemon peels | 54 | 6 | 240 | [42] | |
Molts of mealworm | 50.9 | 6 | 150 | [46] | |
Coconut shells | 49.4 | 6 | 120 | [51] | |
Active carbon ROW 08 | 45 | 8 | 60 | [59] | |
Paulownia tomentosa tree leaves | 43.1 | 8 | 72 | [43] | |
Exoskeletons of mealworm | 31.5 | 6 | 180 | [46] | |
Nut sawdust | 30.1 | 7 | - | [60] | |
Bone meal | 24.6 | 6 | 90 | [61] | |
Wood sawdust | 19.2 | - | 120 | [50] | |
BV10 | Palm shell-based activated carbon | 30 | 3 | - | [47] |
Activated carbon from jute fiber | 28 | 8 | 220 | [62] | |
Spent green tea leaves | 26.7 | 3 | 240 | [45] | |
Rapeseed husks | 20.9 | 3 | 180 | This work | |
Banana peels | 20.6 | 7 | 1440 | [63] | |
Cedar cones | 17.2 | 5 | 480 | [64] | |
Coconut fiber | 14.9 | 9.2 | 90 | [65] | |
Sugar cane fiber | 10.4 | - | - | [66] | |
Molts of mealworm | 6.44 | 3 | 210 | [46] | |
Lemon peels | 5.7 | 3 | 240 | [42] | |
Mango leaves (powder) | 3.3 | - | 50 | [67] | |
Orange peels | 3.2 | 4 | - | [42] | |
Coal-fired coconut fiber | 2.6 | 6.5 | 150 | [52] | |
Powdered coffee | 2.5 | 2 | 180 | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jóźwiak, T.; Filipkowska, U. The Use of Rapeseed Husks to Remove Acidic and Basic Dyes from Aquatic Solutions. Appl. Sci. 2024, 14, 1174. https://doi.org/10.3390/app14031174
Jóźwiak T, Filipkowska U. The Use of Rapeseed Husks to Remove Acidic and Basic Dyes from Aquatic Solutions. Applied Sciences. 2024; 14(3):1174. https://doi.org/10.3390/app14031174
Chicago/Turabian StyleJóźwiak, Tomasz, and Urszula Filipkowska. 2024. "The Use of Rapeseed Husks to Remove Acidic and Basic Dyes from Aquatic Solutions" Applied Sciences 14, no. 3: 1174. https://doi.org/10.3390/app14031174
APA StyleJóźwiak, T., & Filipkowska, U. (2024). The Use of Rapeseed Husks to Remove Acidic and Basic Dyes from Aquatic Solutions. Applied Sciences, 14(3), 1174. https://doi.org/10.3390/app14031174