Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Films
- The electrophoretic deposition took place in a simple two-electrode cell, with FTO serving as the anode and platinum as the cathode. The volume of the ZnO suspension in ethanol was 50 mL. Deposition occurred at applied voltages of 60 V, 70 V, and 80 V, with deposition times of 3 and 5 min, for each voltage. Figure 1 shows the scheme for cathodic deposition.
- The FTO and the ZnO films were retrieved from the suspension and then calcined with a thermal treatment at 450 °C for 30 min.
- The FTO was immersed in N719 ruthenium-based dye for 24 h.
- The FTO/dye was coupled with the platinum.
- AN-50 electrolyte was injected between the sandwiched electrodes.
- The cells were tested under light simulation following procedures outlined by Nunes. V.F et al. [34].
2.2. Characterization of the Films
3. Results and Discussion
3.1. XRD Analysis
3.2. UV Analysis
3.3. Electrochemical Impedance Spectroscopy (EIS)
3.4. Photovoltaic Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikpesu, J.E.; Iyuke, S.E.; Daramola, M.; Okewale, A.O. Synthesis of Improved Dye-Sensitized Solar Cell for Renewable Energy Power Generation. Sol. Energy 2020, 206, 918–934. [Google Scholar] [CrossRef]
- Fernandes, P.A.; Sartori, A.F.; Salomé, P.M.P.; Malaquias, J.; Da Cunha, A.F.; Graça, M.P.F.; González, J.C. Admittance Spectroscopy of Cu2ZnSnS4 Based Thin Film Solar Cells. Appl. Phys. Lett. 2012, 100, 233504. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, G. Nanostructured Photoelectrodes for Dye-Sensitized Solar Cells. Nano Today 2011, 6, 91–109. [Google Scholar] [CrossRef]
- Bisquert, J. Dilemmas of Dye-Sensitized Solar Cells. ChemPhysChem 2011, 12, 1633–1636. [Google Scholar] [CrossRef]
- Pugazhendhi, K.; Praveen, B.; Sharmila, D.J.; Mary, J.S.S.; Kumar, P.N.; Bharathilenin, V.; Shyla, J.M. Plasmonic TiO2/Al@ ZnO Nanocomposite-Based Novel Dye-Sensitized Solar Cell with 11.4% Power Conversion Efficiency. Sol. Energy 2021, 215, 443–450. [Google Scholar] [CrossRef]
- Chou, T.P.; Zhang, Q.; Russo, B.; Cao, G. Enhanced Light-Conversion Efficiency of Titanium-Dioxide Dye-Sensitized Solar Cells with the Addition of Indium-Tin-Oxide and Fluorine-Tin-Oxide Nanoparticles in Electrode Films. J. Nanophotonics 2008, 2, 023511. [Google Scholar] [CrossRef]
- Javed, A.H.; Shahzad, N.; Khan, M.A.; Ayub, M.; Iqbal, N.; Hassan, M.; Hussain, N.; Rameel, M.I.; Shahzad, M.I. Effect of ZnO Nanostructures on the Performance of Dye Sensitized Solar Cells. Sol. Energy 2021, 230, 492–500. [Google Scholar] [CrossRef]
- Lu, L.; Li, R.; Fan, K.; Peng, T. Effects of Annealing Conditions on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with ZnO Nanoparticles. Sol. Energy 2010, 84, 844–853. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO Nanostructured Materials and Their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Katoh, R.; Furube, A.; Murai, M.; Tamaki, Y.; Hara, K.; Murata, S.; Arakawa, H.; Tachiya, M. Quantitative Estimation of the Efficiency of Electron Injection from Excited Sensitizer Dye into Nanocrystalline ZnO Film. J. Phys. Chem. B 2004, 108, 2643–2647. [Google Scholar] [CrossRef]
- Ye, N.; Qi, J.; Qi, Z.; Zhang, X.; Yang, Y.; Liu, J.; Zhang, Y. Improvement of the Performance of Dye-Sensitized Solar Cells Using Sn-Doped ZnO Nanoparticles. J. Power Sources 2010, 195, 5806–5809. [Google Scholar] [CrossRef]
- Suresh, S.; Pandikumar, A.; Murugesan, S.; Ramaraj, R.; Raj, S.P. Photovoltaic Performance of Solid-State Solar Cells Based on ZnO Nanosheets Sensitized with Low-Cost Metal-Free Organic Dye. Sol. Energy 2011, 85, 1787–1793. [Google Scholar] [CrossRef]
- Wu, P.; Pike, J.; Zhang, F.; Chan, S. Low-Temperature Synthesis of Zinc Oxide Nanoparticles. Int. J. Appl. Ceram. Technol. 2006, 3, 272–278. [Google Scholar] [CrossRef]
- Zhang, Q.; Dandeneau, C.S.; Zhou, X.; Cao, G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Adv. Mater. 2009, 21, 4087–4108. [Google Scholar] [CrossRef]
- Wojtyła, S.; Baran, T. Copper Zinc Oxide Heterostructure Nanoflowers for Hydrogen Evolution. Int. J. Hydrogen Energy 2019, 44, 27343–27353. [Google Scholar] [CrossRef]
- Javed, M.; Qamar, M.A.; Shahid, S.; Alsaab, H.O.; Asif, S. Highly Efficient Visible Light Active Cu–ZnO/S-g-C3N4 Nanocomposites for Efficient Photocatalytic Degradation of Organic Pollutants. RSC Adv. 2021, 11, 37254–37267. [Google Scholar] [CrossRef]
- Di Mauro, A.; Fragalà, M.E.; Privitera, V.; Impellizzeri, G. ZnO for Application in Photocatalysis: From Thin Films to Nanostructures. Mater. Sci. Semicond. Process. 2017, 69, 44–51. [Google Scholar] [CrossRef]
- Bhogaita, M.; Devaprakasam, D. Hybrid Photoanode of TiO2-ZnO Synthesized by Co-Precipitation Route for Dye-Sensitized Solar Cell Using Phyllanthus Reticulatas Pigment Sensitizer. Sol. Energy 2021, 214, 517–530. [Google Scholar] [CrossRef]
- Nunes, V.F.; Teixeira, E.S.; Maia Júnior, P.H.F.; Almeida, A.F.L.; Freire, F.N.A. Study of Electrophoretic Deposition of ZnO Photoanodes on Fluorine-Doped Tin Oxide (FTO) Glass for Dye-Sensitized Solar Cells (DSSCs). Cerâmica 2022, 68, 120–125. [Google Scholar] [CrossRef]
- Selvinsimpson, S.; Gnanamozhi, P.; Pandiyan, V.; Govindasamy, M.; Habila, M.A.; AlMasoud, N.; Chen, Y. Synergetic Effect of Sn Doped ZnO Nanoparticles Synthesized via Ultrasonication Technique and Its Photocatalytic and Antibacterial Activity. Environ. Res. 2021, 197, 111115. [Google Scholar] [CrossRef]
- Tarwal, N.L.; Patil, V.L.; Rani, J.R.; Gurav, K.V.; Shaikh, J.S.; Khandekar, M.S.; Harale, N.S.; Patil, P.S.; Jang, J.H. Plasmonic DSSC Performance of Spray Deposited Ag-ZnO and Au-ZnO Films. Chin. J. Phys. 2021, 73, 581–588. [Google Scholar] [CrossRef]
- Schneider, M.; Weiser, M.; Ferl, S.; Krasmann, C.; Potthoff, A.; Voigt, K.; Malcher, P. Facile Deposition of Multiwalled Carbon Nanotubes via Electrophoretic Deposition in an Environmentally Friendly Suspension. Surf. Coat. Technol. 2021, 406, 126741. [Google Scholar] [CrossRef]
- Lyalin, E.; Il’ina, E.; Kalinina, E.; Antonov, B.; Pankratov, A.; Pereverzev, D. Electrophoretic Deposition and Characterization of Thin-Film Membranes Li7La3Zr2O12. Membranes 2023, 13, 468. [Google Scholar] [CrossRef] [PubMed]
- Pröller, S.; Filonik, O.; Eller, F.; Mansi, S.; Zhu, C.; Schaible, E.; Hexemer, A.; Müller-Buschbaum, P.; Herzig, E.M. Electrophoresis Assisted Printing: A Method To Control the Morphology in Organic Thin Films. ACS Appl. Mater. Interfaces 2020, 12, 5219–5225. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Bagchi, B.; Basu, R.N. Nanostructured Zirconia Thin Film Fabricated by Electrophoretic Deposition Technique. J. Alloys Compd. 2017, 693, 1220–1230. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, L.; Zhang, Z.; Qi, X.; Li, H.; Zhong, J. 3D Binder-Free MoSe2 Nanosheets/Carbon Cloth Electrodes for Efficient and Stable Hydrogen Evolution Prepared by Simple Electrophoresis Deposition Strategy. Sci. Rep. 2016, 6, 22516. [Google Scholar] [CrossRef]
- Zargazi, M.; Entezari, M.H. Anodic Electrophoretic Deposition of Bi2WO6 Thin Film: High Photocatalytic Activity for Degradation of a Binary Mixture. Appl. Catal. B Environ. 2019, 242, 507–517. [Google Scholar] [CrossRef]
- Pikalova, E.; Osinkin, D.; Kalinina, E. Direct Electrophoretic Deposition and Characterization of Thin-Film Membranes Based on Doped BaCeO3 and CeO2 for Anode-Supported Solid Oxide Fuel Cells. Membranes 2022, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Hassam, C.L.; Sciortino, F.; Nguyen, N.T.K.; Srinivasan, B.; Ariga, K.; Gascoin, F.; Grasset, F.; Mori, T.; Uchikoshi, T.; Thimont, Y.; et al. Robust, Transparent Hybrid Thin Films of Phase-Change Material Sb2S3 Prepared by Electrophoretic Deposition. ACS Appl. Energy Mater. 2021, 4, 9891–9901. [Google Scholar] [CrossRef]
- Shakir, S.; Abd-ur-Rehman, H.M.; Zahid, R.; Iwamoto, M.; Periasamy, V. Multistep Electrophoretic Deposition of TiO2 Film and Its Surface Modification for Dye Sensitized Solar Cells. J. Alloys Compd. 2020, 837, 155579. [Google Scholar] [CrossRef]
- Yaacob, K.A.; Keoh, D.L.; Kyaw, H.M.A.; Ishak, M.N. CdSe-TiO2 Nanocomposites Film Deposited by Electrophoretic Co-Deposition towards Quantum Dots Sensitized Solar Cells. Mater. Today Proc. 2022, 66, 3144–3149. [Google Scholar] [CrossRef]
- Vasanth, A.; Powar, N.S.; Krishnan, D.; Nair, S.V.; Shanmugam, M. Electrophoretic Graphene Oxide Surface Passivation on Titanium Dioxide for Dye Sensitized Solar Cell Application. J. Sci. Adv. Mater. Devices 2020, 5, 316–321. [Google Scholar] [CrossRef]
- Aghili, F.; Hoomehr, B.; Saidi, R.; Raeissi, K. Synthesis and Electrophoretic Deposition of Zinc Oxide and Zinc Oxide-Bioactive Glass Composite Nanoparticles on AZ31 Mg Alloy for Biomedical Applications. Ceram. Int. 2022, 48, 34013–34024. [Google Scholar] [CrossRef]
- Nunes, V.F.; Lima, F.M.; Teixeira, E.S.; Maia Júnior, P.H.F.; Almeida, A.F.L.; Freire, F.N.A. Synthesis of TiO2/ZnO Photoanodes on FTO Conductive Glass for Photovoltaic Applications. Cerâmica 2023, 69, 79–86. [Google Scholar] [CrossRef]
- Das, P.P.; Roy, A.; Devi, P.S.; Lee, Y. Solution Processed Al-Doped ZnO and Its Performance in Dye Sensitized Solar Cells. Curr. Appl. Phys. 2021, 30, 69–76. [Google Scholar] [CrossRef]
- Munk, K. The Kubelka-Munk Theory of Reflectance, Zeit. Fur Tekn. Phys. 1931, 12, 593. [Google Scholar]
- Wang, Y.; Leu, I.; Hon, M. Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide Coatings. J. Am. Ceram. Soc. 2004, 87, 84–88. [Google Scholar] [CrossRef]
- Ranamagar, B.; Abiye, I.; Karki, H.; Lan, Y.; Abebe, F. Performance of Rhodamine-Sensitized Solar Cells Fabricated with Silver Nanoparticles. Adv. Nanoparticles 2023, 12, 68–79. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Liu, W. Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode. Molecules 2017, 22, 1284. [Google Scholar] [CrossRef] [PubMed]
- Esgin, H.; Caglar, Y.; Caglar, M. Photovoltaic Performance and Physical Characterization of Cu Doped ZnO Nanopowders as Photoanode for DSSC. J. Alloys Compd. 2022, 890, 161848. [Google Scholar] [CrossRef]
- Hasanpoor, M.; Aliofkhazraei, M.; Delavari, H.H. In-Situ Study of Mass and Current Density for Electrophoretic Deposition of Zinc Oxide Nanoparticles. Ceram. Int. 2016, 42, 6906–6913. [Google Scholar] [CrossRef]
- Giannouli, M.; Govatsi, K.; Syrrokostas, G.; Yannopoulos, S.N.; Leftheriotis, G. Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials 2018, 11, 411. [Google Scholar] [CrossRef]
- Siregar, N.; Motlan, U.; Panggabean, J.H.; Sirait, M.; Rajagukguk, J.; Gultom, N.S.; Sabir, F.K. Fabrication of Dye-Sensitized Solar Cells (DSSC) Using Mg-Doped ZnO as Photoanode and Extract of Rose Myrtle (Rhodomyrtus tomentosa) as Natural Dye. Int. J. Photoenergy 2021, 2021, e4033692. [Google Scholar] [CrossRef]
- Benghanem, M.S.; Alamri, S.N. Modeling of Photovoltaic Module and Experimental Determination of Serial Resistance. J. Taibah Univ. Sci. 2009, 2, 94–105. [Google Scholar] [CrossRef]
- Lai, F.-I.; Yang, J.-F.; Hsu, Y.-C.; Lin, K.-J.; Kuo, S.-Y. Enhancing DSSC Performance through Manipulation of the Size of ZnO Nanorods. ACS Omega 2023, 8, 40206–40211. [Google Scholar] [CrossRef] [PubMed]
ZnO Film | Thickness (μm) |
---|---|
60 V_3 min | 2.02 |
70 V_3 min | 2.05 |
80 V_3 min | 2.08 |
60 V_5 min | 2.1 |
70 V_5 min | 2.0 |
80 V_5 min | 2.02 |
ZnO Film | Electron Lifetime (ms) |
---|---|
60 V_3 min | 2.1 |
70 V_3 min | 5.4 |
80 V_3 min | 2.6 |
60 V_5 min | 1.5 |
70 V_5 min | 2.3 |
80 V_5 min | 5.1 |
Deposition Time | 3 min | 5 min | ||||
---|---|---|---|---|---|---|
Voltages (V) | 60 | 70 | 80 | 60 | 70 | 80 |
Jsc (mA/cm2) | 0.65 | 1.30 | 0.40 | 1.80 | 1.94 | 2.27 |
FF | 0.29 | 0.48 | 0.47 | 0.19 | 0.51 | 0.40 |
Efficiency (%) | 0.12 | 0.40 | 0.12 | 0.20 | 0.64 | 0.55 |
Voc (V) | 0.64 | 0.66 | 0.63 | 0.66 | 0.65 | 0.61 |
IPCE (%) | 1.28 | 2.57 | 0.80 | 3.52 | 3.80 | 4.48 |
Rsh (Ω/cm2) | 1222 | 194.7 | 6333.3 | 1360 | 1400 | 750 |
Rs (Ω/cm2) | 750 | 168 | 476.2 | 250 | 108.4 | 163.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, V.F.; Graça, M.P.F.; Hammami, I.; Almeida, A.F.L.; Freire, F.N.A. Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications. Appl. Sci. 2024, 14, 1202. https://doi.org/10.3390/app14031202
Nunes VF, Graça MPF, Hammami I, Almeida AFL, Freire FNA. Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications. Applied Sciences. 2024; 14(3):1202. https://doi.org/10.3390/app14031202
Chicago/Turabian StyleNunes, Vanja Fontenele, Manuel Pedro Fernandes Graça, Imen Hammami, Ana Fabíola Leite Almeida, and Francisco Nivaldo Aguiar Freire. 2024. "Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications" Applied Sciences 14, no. 3: 1202. https://doi.org/10.3390/app14031202
APA StyleNunes, V. F., Graça, M. P. F., Hammami, I., Almeida, A. F. L., & Freire, F. N. A. (2024). Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications. Applied Sciences, 14(3), 1202. https://doi.org/10.3390/app14031202