Characterization and Crystallinity of Two Bioactive Sealers: Qualitative and Quantitative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Raman Spectroscopy
2.3. Scanning Electron Microscopy (SEM) Analysis
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. X-ray Diffraction (XRD)
2.6. Statistical Analysis
3. Results
3.1. Raman Spectroscopy
3.2. Scanning Electron Microscopy (SEM)
3.3. FTIR Spectroscopy
3.4. XRD Results
3.4.1. Qualitative Analysis of XRD
3.4.2. Quantitative Analysis of XRD
4. Discussion
5. Limitation of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baras, B.H.; Melo, M.A.S.; Thumbigere-Math, V.; Tay, F.R.; Fouad, A.F.; Oates, T.W.; Weir, M.D.; Cheng, L.; Xu, H.H.K. Novel bioactive and therapeutic root canal sealers with antibacterial and remineralization properties. Materials 2020, 13, 1096. [Google Scholar] [CrossRef] [PubMed]
- Grossman, L.L.I.; Oliet, S.; Del Rio, C.E. Endodontic Practice; Lea & Febiger: Philadelphia, PA, USA, 1988. [Google Scholar]
- Ørstavik, D. Materials used for root canal obturation: Technical, biological and clinical testing. Endod. Top. 2005, 12, 25–38. [Google Scholar] [CrossRef]
- Singh, H.; Markan, S.; Kaur, M.; Gupta, G.; Singh, H.; Kaur, M.J.D.O.J. Endodontic sealers: Current concepts and comparative analysis. Dent. Open J. 2015, 2, 32–37. [Google Scholar] [CrossRef]
- Chandra, S. Grossman’s Endodontic Practice; Wolters Kluwer India Pvt Ltd.: New Delhi, India, 2014. [Google Scholar]
- Silva, E.J.; Cardoso, M.L.; Rodrigues, J.P.; De-Deus, G.; Fidalgo, T.K.d.S. Solubility of bioceramic-and epoxy resin-based root canal sealers: A systematic review and meta-analysis. Aust. Endod. J. 2021, 47, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Debtsply: AH-26 Root Canal Sealer. Available online: https://www.dentalworldofficial.com/product/dentsply-ah-26-root-canal-sealer/ (accessed on 10 January 2024).
- Abu Zeid, S.T.; Alamoudi, R.A.; Mokeem Saleh, A.A. Impact of Water Solubility on Chemical Composition and Surface Structure of Two Generations of Bioceramic Root Canal Sealers. Appl. Sci. 2022, 12, 873. [Google Scholar] [CrossRef]
- Chopra, V.; Davis, G.; Baysan, A. Physico-Chemical Properties of Calcium-Silicate vs. Resin Based Sealers—A Systematic Review and Meta-Analysis of Laboratory-Based Studies. Materials 2021, 15, 229. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, N.M.; Aldawsari, A.A.; Alshamrani, H.S.; Fakeeha, I.A.; Hamoud, F.; Alshehri, A.A.A.; Almutairi, M.F. Sealing Ability and Micro Leakage of AH26 and AH Plus Root Canal Sealers: A Systematic Review. Arch. Pharm. Pract. 2023, 14, 141. [Google Scholar] [CrossRef]
- Abu Zeid, S.T.; Alnoury, A. Characterisation of the Bioactivity and the Solubility of a New Root Canal Sealer. Int. Dent. J. 2023, 73, 760–769. [Google Scholar] [CrossRef]
- Edrees, H.Y.; Abu Zeid, S.T.; Atta, H.M.; AlQriqri, M.A. Induction of osteogenic differentiation of mesenchymal stem cells by bioceramic root repair material. Materials 2019, 12, 2311. [Google Scholar] [CrossRef]
- Debelian, G.; Trope, M. The use of premixed bioceramic materials in endodontics. G Ital. Endod. 2016, 30, 70–80. [Google Scholar] [CrossRef]
- Trope, M.; Bunes, A.; Debelian, G. Root filling materials and techniques: Bioceramics a new hope? Endod. Top. 2015, 32, 86–96. [Google Scholar] [CrossRef]
- Koch, K.A.; Brave, D.; Nasseh, A. Bioceramic Technology: Closing the Endo-Restorative Circle, Part I. Dent. Today 2010, 29, 100–105. [Google Scholar] [PubMed]
- Abu Zeid, S.T.H.; Mokeem Saleh, A.A.Y. Solubility, pH Changes and releasing elements of different bioceramic and mineral trioxide aggregate root canal sealers comparative study. J. Trauma Treat. 2015, 4, 1222–2167. [Google Scholar]
- Zamparini, F.; Prati, C.; Taddei, P.; Spinelli, A.; Di Foggia, M.; Gandolfi, M.G. Chemical-physical properties and bioactivity of new premixed calcium silicate-bioceramic root canal sealers. Int. J. Mol. Sci. 2022, 23, 13914. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi, J.; Sadrnezhaad, S.; Behnam Ghader, A. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement. J. Mater. Sci. Mater. Med. 2008, 19, 3507–3514. [Google Scholar] [CrossRef] [PubMed]
- Abu Zeid, S.T.; Alamoudi, R.A.; Abou Neel, E.A.; Mokeem Saleh, A.A. Morphological and spectroscopic study of an apatite layer induced by fast-set versus regular-set EndoSequence root repair materials. Mater 2019, 12, 3678. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Luklinska, Z.; Clarke, R.; Davy, K. Hydroxyapatite as a filler for dental composite materials: Mechanical properties and in vitro bioactivity of composites. J. Mater. Sci. Mater. Med. 2001, 12, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Prevest DenPro. CeraFill RCS, Bioceramic Root Canal Filling and Sealing Material. Cerafill-RCS-3.pdf. 2022. Available online: https://www.prevestdenpro.com/product/cerafill-rcs/ (accessed on 2 January 2022).
- Balhuc, S.; Campian, R.; Labunet, A.; Negucioiu, M.; Buduru, S.; Kui, A. Dental applications of systems based on hydroxyapatite nanoparticles—An evidence-based update. Crystals 2021, 11, 674. [Google Scholar] [CrossRef]
- De Aza, P.; De Aza, A.; De Aza, S. Crystalline bioceramic materials. Bol. Soc. Esp. Ceram. Vidr. 2005, 44, 135–145. [Google Scholar] [CrossRef]
- Ermrich, M.; Opper, D. X-Ray Powder Diffraction. XRD for the Analyst, Getting Acquainted with the Principles, 2nd ed.; Panalytical: Almelo, The Netherlands, 2013; pp. 63–85. Available online: https://imf.ucmerced.edu/sites/imf.ucmerced.edu/files/page/documents/x-ray_powder_diffraction.pdf (accessed on 17 November 2023).
- Macon, A.L.; Kim, T.B.; Valliant, E.M.; Goetschius, K.; Brow, R.K.; Day, D.E.; Hoppe, A.; Boccaccini, A.R.; Kim, I.Y.; Ohtsuki, C. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J. Mater. Sci. Mater. Med. 2015, 26, 115. [Google Scholar] [CrossRef]
- Farlay, D.; Panczer, G.; Rey, C.; Delmas, P.D.; Boivin, G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J. Bone Miner. Metab. 2010, 28, 433–445. [Google Scholar] [CrossRef]
- Sa, Y.; Guo, Y.; Feng, X.; Wang, M.; Li, P.; Gao, Y.; Yang, X.; Jiang, T. Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent? New J. Chem. 2017, 41, 5723–5731. [Google Scholar] [CrossRef]
- Abu Zeid, S.T.; Saif, R.E.; Alsofi, L.; Alamoudi, R.A. Long-Term Impact of New Calcium-Silicate-Based Sealer on Mineral Contents and Crystallinity of Radicular Dentin: An Ex Vivo Study. J Spectrosc 2020, 2020, 9570274. [Google Scholar] [CrossRef]
- Abu Zeid, S.T.; Alamoudi, N.M.; Khafagi, M.G.; Abou Neel, E.A. Chemistry and bioactivity of NeoMTA Plus™ versus MTA Angelus® root repair materials. J. Spectrosc. 2017, 2017, 8736428. [Google Scholar] [CrossRef]
- Lebon, M.; Reiche, I.; Bahain, J.J.; Chadefaux, C.; Moigne, A.M.; Fröhlich, F.; Sémah, F.; Schwarcz, H.P.; Falgueres, C. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J. Archaeol. Sci. 2010, 37, 2265–2276. [Google Scholar] [CrossRef]
- Figueiredo, M.; Gamelas, J.; Martins, A. Characterization of bone and bone-based graft materials using FTIR spectroscopy. In Infrared Spectroscopy—Life and Biomedical Sciences; IntechOpen: London, UK, 2012; pp. 315–338. [Google Scholar]
- Verdelis, K.; Lukashova, L.; Wright, J.; Mendelsohn, R.; Peterson, M.; Doty, S.; Boskey, A. Maturational changes in dentin mineral properties. Bone 2007, 40, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, S.; Ragadhita, R.; Al Husaeni, D.F.; Nandiyanto, A. How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN J. Sci. Eng. 2022, 2, 65–76. [Google Scholar] [CrossRef]
- Han, L.; Okiji, T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int. Endod. J. 2013, 46, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Estivalet, M.S.; de Araújo, L.P.; Immich, F.; da Silva, A.F.; Ferreira, N.d.S.; da Rosa, W.L.d.O.; Piva, E. Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review. Life 2022, 12, 1853. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, A.Y.; Kutty, M.G.; Kasim, N.H.A.; Ab Aziz, Z.A.C. The effect of moisture conditions on the constitution of two bioceramic-based root canal sealers. J. Dent. Sci. 2017, 12, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Ferreira, C.M.; Pinto, K.P.; Barbosa, A.F.A.; Colaço, M.V.; Sassone, L.M. Influence of variations in the environmental pH on the solubility and water sorption of a calcium silicate-based root canal sealer. Int. Endod. J. 2021, 54, 1394–1402. [Google Scholar] [CrossRef]
- Belal, R.S.I.; Edanami, N.; Yoshiba, K.; Yoshiba, N.; Ohkura, N.; Takenaka, S.; Noiri, Y. Comparison of calcium and hydroxyl ion release ability and in vivo apatite-forming ability of three bioceramic-containing root canal sealers. Clin. Oral Investig. 2022, 26, 1443–1451. [Google Scholar] [CrossRef]
- Suchý, T.; Bartoš, M.; Sedláček, R.; Šupová, M.; Žaloudková, M.; Martynková, G.S.; Foltán, R. Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials 2021, 14, 4388. [Google Scholar] [CrossRef]
- Taddei, P.; Modena, E.; Tinti, A.; Siboni, F.; Prati, C.; Gandolfi, M.G. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids. J. Mol. Struct. 2011, 993, 367–375. [Google Scholar] [CrossRef]
- Dambrauskas, T.; Baltakys, K.; Škamat, J.; Kudžma, A. Hydration peculiarities of high basicity calcium silicate hydrate samples. J. Therm. Anal. Calorim. 2018, 131, 491–499. [Google Scholar] [CrossRef]
- Giraudo, N.; Thissen, P. Carbonation competing functionalization on calcium-silicate-hydrates: Investigation of four promising surface-activation techniques. ACS Sustain. Chem. Eng. 2016, 4, 3985–3994. [Google Scholar] [CrossRef]
- Black, L.; Garbev, K.; Gee, I.J.C.; Research, C. Surface carbonation of synthetic CSH samples: A comparison between fresh and aged CSH using X-ray photoelectron spectroscopy. Cem. Concr. Res. 2008, 38, 745–750. [Google Scholar] [CrossRef]
- Chen, C.-C.; Ho, C.-C.; Chen, C.-H.D.; Ding, S.-J. Physicochemical properties of calcium silicate cements for endodontic treatment. J. Endod. 2009, 35, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Poralan, G.; Gambe, J.; Alcantara, E.; Vequizo, R. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application. IOP Conf. Ser. Mater. Sci. Eng. 2015, 79, 012028. [Google Scholar] [CrossRef]
- Reyes-Gasga, J.; Martínez-Piñeiro, E.L.; Rodríguez-Álvarez, G.; Tiznado-Orozco, G.E.; García-García, R.; Brès, E.F. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater. Sci. Eng. C 2013, 33, 4568–4574. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; Van Deventer, J.S. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
Measured Parameter | Methods | Formula and Functional Group | Band Location (cm−1) | References |
---|---|---|---|---|
Mineral maturity | Raman | Ratio of integrated area of apatitic v3PO43− phosphate/non-apatitic phosphate bands | ≈1030/1110 | Farlay et al., 2010 [26] |
Mineralization minerals/collagen matrix | FTIR | Ratio of integrated area of v1v3PO43−/Amide I | 1200–900/1720–1585 | Farlay et al., 2010, Figueiredo et al., 2012 and Verdelis et al., 2007 [26,31,32] |
Carbonate/phosphate | FTIR | Ratio of integrated area of v2 CO32−/v1v3PO43− | 890–830/1200–900 | Farlay et al., 2010, Figueiredo et al., 2012 and Verdelis et al., 2007 [26,31,32] |
Crystallinity index Raman (CIRaman) | Raman | FHMW of PO43− | ≈960 | Sa et al., 2017 [27] |
Crystallinity Index (CIFTIR) | FTIR | Band intensities (at 700–500 cm−1) of split doublet v4 phosphate bands | ≈600 and 560 cm−1 | Lebon, 2010 [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Zeid, S.T.; Saif, R.E.; Mostafa, H.A.; Edrees, H.Y. Characterization and Crystallinity of Two Bioactive Sealers: Qualitative and Quantitative Analysis. Appl. Sci. 2024, 14, 1285. https://doi.org/10.3390/app14031285
Abu-Zeid ST, Saif RE, Mostafa HA, Edrees HY. Characterization and Crystallinity of Two Bioactive Sealers: Qualitative and Quantitative Analysis. Applied Sciences. 2024; 14(3):1285. https://doi.org/10.3390/app14031285
Chicago/Turabian StyleAbu-Zeid, Sawsan T., Ragab E. Saif, Hisham A. Mostafa, and Hadeel Y. Edrees. 2024. "Characterization and Crystallinity of Two Bioactive Sealers: Qualitative and Quantitative Analysis" Applied Sciences 14, no. 3: 1285. https://doi.org/10.3390/app14031285
APA StyleAbu-Zeid, S. T., Saif, R. E., Mostafa, H. A., & Edrees, H. Y. (2024). Characterization and Crystallinity of Two Bioactive Sealers: Qualitative and Quantitative Analysis. Applied Sciences, 14(3), 1285. https://doi.org/10.3390/app14031285