Numerical Analysis of the Overtopping Failure of the Tailings Dam Model Based on Inception Similarity Optimization
Abstract
:1. Introduction
2. Inception Similarity Optimization Analysis
3. Numerical Test Method and Scheme Design
Numerical Calculation Method
4. Test Results
4.1. Prototype Breach Development Process
4.2. Characteristics of Overtopping Dam Break
5. Overtopping Dam-Break Characteristics of Reduced-Scale Models
5.1. Fly Ash Mixed with Bentonite (4:1) Scheme
5.2. Scheme of Fine Tailings Mixed with 5% Fly Ash
5.3. Prototype Tailings Scheme
6. Comparative Analysis and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grebby, S.; Sowter, A.; Gluyas, J.; Toll, D.; Gee, D.; Athab, A.; Girindran, R. Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam collapse. Commun. Earth Environ. 2021, 2, 2. [Google Scholar] [CrossRef]
- Jin, J.; Song, C.; Liang, B.; Chen, Y.; Su, M. Dynamic characteristics of tailings reservoir under seismic load. Environ. Earth Sci. 2018, 77, 654. [Google Scholar] [CrossRef]
- Piciullo, L.; Storrsten, E.B.; Liu, Z.; Farrokh, N.; Lacasse, S. A new look at the statistics of tailings dam failures. Eng. Geol. 2022, 303, 106657. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Salgueiro, A.R.; Diez-Herrero, A.; Pereira, H.G. A review of the European incidents in the worldwide context. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.L.H.; Alcantara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Souza, F.C.R. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Observ. Geoinf. 2020, 90, 102119. [Google Scholar] [CrossRef]
- Amini, M.; Ardestani, A.; Khosravi, M.H. Stability analysis of slide-toe-toppling failure. Eng. Geol. 2017, 228, 82–96. [Google Scholar] [CrossRef]
- Wang, L.N.; Lian, Y.Q.; Li, Z. Hydraulic analysis for strategic management of flood risks along the Illinois River. Environ. Earth Sci. 2019, 78, 80. [Google Scholar] [CrossRef]
- Wei, Z.A.; Yin, G.Z.; Wan, L.; Li, G.Z. A case study on a geotechnical investigation of drainage methods for heightening a tailings dam. Environ. Earth Sci. 2016, 75, 106. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, W.; Chen, X.; Chen, H.; Zhang, C. Experiments on the characteristics of breach variation-s due to natural dam overtopping. Environ. Earth Sci. 2021, 80, 373. [Google Scholar] [CrossRef]
- Tao, Z.; Zhu, C.; He, M.; Karakus, M. A physical modeling-based study on the control mechanisms of negative Poisson’s ratio anchor cable on the stratifed toppling deformation of anti-inclined slopes. Int. J. Rock. Mech. Min. Sci. 2021, 138, 104632. [Google Scholar] [CrossRef]
- Zhou, G.G.D.; Li, S.; Lu, X.Q.; Tang, H. Large-scale landslide dam breach experiments: Overtopping and “overtopping and seepage” failures. Eng. Geol. 2022, 304, 106680. [Google Scholar] [CrossRef]
- Dazzi, S.; Vacondio, R.; Mignosa, P.; Aureli, F. Assessment of presimulated scenarios as a non-structural measure for food management in case of levee-breach inundations. Int. J. Disaster Risk Reduct. 2022, 74, 102926. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Fan, G.; Li, H.B.; Zhou, J.W.; Yang, X.G. Large-scale feld model tests of landslide dam breaching. Eng. Geol. 2021, 293, 106322. [Google Scholar] [CrossRef]
- Crouzy, B.; Perona, P. Biomass selection by foods and related timescales. Part 2: Stochastic modeling. Adv. Water Resour. 2012, 39, 97–105. [Google Scholar] [CrossRef]
- Jin, J.; Song, C.; Chen, Y. Investigation of a fluid–solid coupling model for a tailings dam with infiltration of suspended particles. Environ. Earth Sci. 2017, 76, 758. [Google Scholar] [CrossRef]
- Robert, E.T.; Matthew, F.J.; Lynne, E.F.; Daniel, R.P.; Tjeerd, J.B.; Jasper, T.D.; Michalis, I.V. Physical modelling of water, fauna and fora: Knowledge gaps, avenues for future research and infrastructural needs. J. Hydraul. Res. 2014, 52, 311–325. [Google Scholar] [CrossRef]
- Altaee, A.; Fellenius, B.H. Physical modeling in sand. Can. Geotech. J. 1994, 31, 420–431. [Google Scholar] [CrossRef]
- Lin, H.; Luo, J.; Zhou, C.; Tao, Z. Research on model material selection based on inception similarity in impact analysis of flood overtopping on tailings dam. Environ. Earth Sci. 2023, 82, 276. [Google Scholar] [CrossRef]
- Aussillous, P.; Chauchat, J.; Pailha, M.; Medale, M.; Guazzelli, E. Investigation of the mobile granular layer in bedload transport by laminar shearing fows. J. Fluid. Mech. 2013, 736, 594–615. [Google Scholar] [CrossRef]
- Chiodi, F.; Claudin, P.; Andreotti, B. A two-phase fow model of sediment transport: Transition from bedload to suspended load. J. Fluid. Mech. 2014, 755, 561–581. [Google Scholar] [CrossRef]
- Middleton, G.V.; Southard, J.B. Mechanics of Sediment Movement; SEPM Soc Sedim Geol: Claremont, CA, USA, 1984; Volume 3. [Google Scholar] [CrossRef]
- Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement Report; California Institute of Technology: Pasadena, CA, USA, 1936; Available online: https://repository.tudelft.nl/islandora/object/uuid:a66ea380-ffa3-449b-b59f-38a35b2c6658 (accessed on 28 November 2023).
- Farinella, G.M.; Battiato, S.; Cipolla, R. Advanced Topics in Computer Vision; Springer Publishing Company, Incorporated: New York, NY, USA, 2013; Available online: https://dl.acm.org/doi/book/10.5555/2541784 (accessed on 28 November 2023).
- ASTM D6913/D6913M-17; Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohkchen, PA, USA, 2017.
- ASTM D854/D864-23; Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International: West Conshohkchen, PA, USA, 2023.
Program | Height and Width of Dam Body H × W (m) | Slope Ratio | Computational Domain L × W × D (m) | Flow Head (m) |
---|---|---|---|---|
Tailings dam prototype | 40 × 26 | 1:5 | 260 × 40 × 26 | 0.5 |
Fly ash mixed with bentonite (4:1) | 0.4 × 0.26 | 1:5 | 2.6 × 0.4 × 0.26 | 0.005 |
Fine tailings | 0.4 × 0.26 | 1:5 | 2.6 × 0.4 × 0.26 | 0.005 |
Prototype tailings | 0.4 × 0.26 | 1:5 | 2.6 × 0.4 × 0.26 | 0.005 |
Name | Average Particle Size (mm) | Density (kg/m3) | Critical Shields Parameter | Entrainment Coefficient | Bed Load Transport Rate Coefficient | Angle of Repose Underwater |
---|---|---|---|---|---|---|
<0.01 mm | 0.005 | 2970 | 0.3 | 0.003 | 8 | 28.7° |
0.01–0.074 mm | 0.04 | 2970 | 0.29 | 0.003 | 8 | 34.7° |
0.074–0.25 mm | 0.12 | 2970 | 0.28 | 0.003 | 8 | 34.7° |
0.25–0.5 mm | 0.37 | 2970 | 0.26 | 0.003 | 8 | 34.7° |
Name | Average Particle Size (mm) | Density (kg/m3) | Critical Shields Parameter | Entrainment Coefficient | Bed Load Transport Rate Coefficient | Angle of Repose Underwater |
---|---|---|---|---|---|---|
<0.005 mm | 0.003 | 2170 | 0.3 | 0.003 | 8 | 24.3° |
0.005–0.01 mm | 0.008 | 2170 | 0.3 | 0.003 | 8 | 24.3° |
0.01–0.05 mm | 0.03 | 2170 | 0.3 | 0.003 | 8 | 24.3° |
0.05–0.1 mm | 0.07 | 2170 | 0.3 | 0.003 | 8 | 24.3° |
0.1–0.5 mm | 0.3 | 2170 | 0.3 | 0.003 | 8 | 24.3° |
Name | Average Particle Size (mm) | Density (kg/m3) | Critical Shields Parameter | Entrainment Coefficient | Bed Load Transport Rate Coefficient | Angle of Repose Underwater |
---|---|---|---|---|---|---|
<0.005 mm | 0.003 | 2970 | 0.3 | 0.003 | 8 | 28.7° |
0.005–0.01 mm | 0.007 | 2970 | 0.3 | 0.003 | 8 | 28.7° |
0.01–0.03 mm | 0.02 | 2970 | 0.3 | 0.003 | 8 | 34.7° |
0.03–0.05 mm | 0.04 | 2970 | 0.29 | 0.003 | 8 | 34.7° |
Name | Fly Ash Mixed with Bentonite (4:1) | Fine Tailings Containing Mixed with 5% Fly Ash | Prototype Tailings | Tailings Dam Prototype |
---|---|---|---|---|
Time (s) | 6300 | 5800 | 7500 | 5700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, D.; Xu, J.; Lin, H. Numerical Analysis of the Overtopping Failure of the Tailings Dam Model Based on Inception Similarity Optimization. Appl. Sci. 2024, 14, 990. https://doi.org/10.3390/app14030990
Qiu D, Xu J, Lin H. Numerical Analysis of the Overtopping Failure of the Tailings Dam Model Based on Inception Similarity Optimization. Applied Sciences. 2024; 14(3):990. https://doi.org/10.3390/app14030990
Chicago/Turabian StyleQiu, Deli, Jiangdong Xu, and Hai Lin. 2024. "Numerical Analysis of the Overtopping Failure of the Tailings Dam Model Based on Inception Similarity Optimization" Applied Sciences 14, no. 3: 990. https://doi.org/10.3390/app14030990
APA StyleQiu, D., Xu, J., & Lin, H. (2024). Numerical Analysis of the Overtopping Failure of the Tailings Dam Model Based on Inception Similarity Optimization. Applied Sciences, 14(3), 990. https://doi.org/10.3390/app14030990