Fault Detection in Active Magnetic Bearings Using Digital Twin Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of AMB
2.2. Mathematical Model of AMB
2.3. Finite Element Model of the AMBs
3. Failures in AMB
- Determining the fault’s timing.
- Determining the component containing a defect.
- Finding the type of the fault.
- A value of 20 is given to the failure of an electric circuit of the sensor.
- A value of 18 is given to the physical contact between the sensor and the rotor.
- A value of 8 is given to the risk of damage to the shaft.
- A value of 3 is given to the presence of debris.
4. Digital Twin Fundamentals and Application in AMB
5. Modeling of Digital Twin for AMB
6. Vibration Image
7. Classification Algorithm
8. Results
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, D.; Li, T.; Hu, Z.; Sun, H. Novel Topologies of Power Electronics Converter as Active Magnetic Bearing Drive. IEEE Trans. Ind. Electron. 2019, 67, 950–959. [Google Scholar] [CrossRef]
- Huang, T.; Zheng, M.; Zhang, G. A Review of Active Magnetic Bearing Control Technology. In Proceedings of the 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 2888–2893. [Google Scholar]
- Supreeth, D.K.; Bekinal, S.I.; Chandranna, S.R.; Doddamani, M. A Review of Superconducting Magnetic Bearings and Their Application. IEEE Trans. Appl. Supercond. 2022, 32, 1–15. [Google Scholar] [CrossRef]
- Sabirin, C.; Binder, A.; Popa, D.D.; Crăciunescu, A. Roumaine, and Undefined 2007, Modeling and Digital Control of an Active Magnetic Bearing System. Available online: http://www.revue.elth.pub.ro/upload/261529art03.pdf (accessed on 6 October 2023).
- Basso, M.; Donati, G.; Mugnaini, M. International, and Undefined 2023, A Simulation Tool for Sensor Selection in AMB Rotor Supported Systems. In Proceedings of the 2023 IEEE International Instrumentation and Measurement Technology, Kuala Lumpur, Malaysia, 22–25 May 2023; Available online: https://ieeexplore.ieee.org/abstract/document/10176113/ (accessed on 9 October 2023).
- Lijesh, K.; Hirani, H. Failure Mode and Effect Analysis of Active Magnetic Bearings. Tribol. Ind. 2016, 38, 90. [Google Scholar]
- Reddy, A.S.; Agarwal, P.K.; Chand, S. Application of principal component analysis for the fault detection and diagnosis of active magnetic bearings. Int. J. Adv. Mechatron. Syst. 2017, 7, 245. [Google Scholar] [CrossRef]
- da Silva, G.M.; Pederiva, R. Fault diagnosis of active magnetic bearings. Mechatronics 2022, 84, 102801. [Google Scholar] [CrossRef]
- Lee, X.Y.; Kumar, A.; Vidyaratne, L.; Rao, A.R.; Farahat, A.; Gupta, C. An ensemble of convolution-based methods for fault detection using vibration signals. In Proceedings of the 2023 IEEE International Conference on Prognostics and Health Management (ICPHM), Montreal, QC, Canada, 5–7 June 2023; pp. 172–179. [Google Scholar]
- Gouws, R. Energy Management by Means of Fault Conditions on Active Magnetic Bearing Systems. 2013. Available online: https://repository.nwu.ac.za/handle/10394/18099 (accessed on 3 August 2023).
- Gouws, R. Active magnetic bearing condition monitoring. World J. Eng. 2013, 10, 179–188. [Google Scholar] [CrossRef]
- Donati, G.; Basso, M.; Manduzio, G.A.; Mugnaini, M.; Pecorella, T.; Camerota, C. A Convolutional Neural Network for Electrical Fault Recognition in Active Magnetic Bearing Systems. Sensors 2023, 23, 7023. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [Google Scholar] [CrossRef]
- Sjarov, M.; Lechler, T.; Fuchs, J.; Brossog, M.; Selmaier, A.; Faltus, F.; Donhauser, T.; Franke, J. The digital twin concept in industry—A review and systematization. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 1789–1796. [Google Scholar]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2020, 58, 346–361. [Google Scholar] [CrossRef]
- Stadler, M.; Weiler, T.; Bleicher, F. Radial self-stabilizing reluctance magnetic bearing. Procedia CIRP 2021, 99, 92–97. [Google Scholar] [CrossRef]
- Taha, O.W.; Hu, Y. Modeling of a Digital Twin for Magnetic Bearings. Appl. Sci. 2023, 13, 8534. [Google Scholar] [CrossRef]
- Wang, J.; Ye, L.; Gao, R.X.; Li, C.; Zhang, L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 2018, 57, 3920–3934. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Wahab, T.M.A. Analysis and Design of PID Control System for Active Magnetic Bearings. Eng. Technol. J. 2009, 27, 2305–2320. Available online: https://www.iasj.net/iasj/download/1065fc8d323295d7 (accessed on 19 September 2023). [CrossRef]
- Xu, G.; Cai, Y.; Ren, Y.; Xin, C.; Fan, Y.; Hu, D. Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption. J. Magn. 2017, 22, 203–213. [Google Scholar] [CrossRef]
- Gupta, S.; Laldingliana, J.; Debnath, S.; Biswas, P.K. Closed Loop Control Of Active Magnetic Bearing Using PID Controller. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018; pp. 686–690. [Google Scholar]
- Martynenko, G.; Martynenko, V. Rotor Dynamics Modeling for Compressor and Generator of the Energy Gas Turbine Unit with Active Magnetic Bearings in Operating Modes. In Proceedings of the 25th IEEE International Conference on Problems of Automated Electric Drive, Theory and Practice, PAEP 2020, Kremenchuk, Ukraine, 21–25 September 2020; pp. 1–4. [Google Scholar]
- Martynenko, G. Practical Application of the Analytical Method of Electromagnetic Circuit Analysis for Determining Magnetic Forces in Active Magnetic Bearings. In Proceedings of the 2020 IEEE Problems of Automated Electrodrive, Theory and Practice (PAEP), Kremenchuk, Ukraine, 21–25 September 2020; pp. 1–4. [Google Scholar]
- Ansys®Maxwell (V.2022 R2); ANSYS, Inc.: Canonsburg, PA, USA, 2022.
- Laldingliana, J.; Debnath, S.; Biswas, P.K. Fem Software Based 2-D and 3-D Construction and Simulation of Single and Double Coils Active Magnetic Bearing. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 665–675. [Google Scholar] [CrossRef]
- Tsai, N.-C.; King, Y.-H.; Lee, R.-M. Fault diagnosis for magnetic bearing systems. Mech. Syst. Signal Process. 2009, 23, 1339–1351. [Google Scholar] [CrossRef]
- Lijesh, K.; Muzakkir, S.; Hirani, H. Failure mode and effect analysis of passive magnetic bearing. Eng. Fail. Anal. 2016, 62, 1–20. [Google Scholar] [CrossRef]
- Gouws, R. A review on active magnetic bearing system limitations, risks of failure and control technologies. SPC 2018, 7, 6615–6620. [Google Scholar] [CrossRef]
- Yang, K.; Hu, Y.; Guo, X.; Zhou, J.; Wu, H. Evaluation of Switching Power Amplifier Topology for Active Magnetic Bearings. Actuators 2021, 10, 131. [Google Scholar] [CrossRef]
- Bisht, S.; Gupta, N.K.; Thakre, G.D. Control techniques and failure mode of active magnetic bearing in machine tool system. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 45–53. [Google Scholar] [CrossRef]
- Hirani, H.; Samanta, P. Hybrid (hydrodynamic + permanent magnetic) journal bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007, 221, 881–891. [Google Scholar] [CrossRef]
- Xu, H.; Wu, J.; Pan, Q.; Guan, X.; Guizani, M. A Survey on Digital Twin for Industrial Internet of Things: Applications, Technologies and Tools. IEEE Commun. Surv. Tutor. 2023, 25, 2569–2598. [Google Scholar] [CrossRef]
- Liu, S.; Bao, J.; Zheng, P. A review of digital twin-driven machining: From digitization to intellectualization. J. Manuf. Syst. 2023, 67, 361–378. [Google Scholar] [CrossRef]
- Guerrero-Hernandez, V.; Reyes-Morales, G.; Jacome-Onofre, P.; Moody, J.A.O.; Matacapan-Toto, F.-A.; Herrera, M.A.M. Integration of an industrial control to a digital twin at the industrial level. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain , 19–21 July 2023; pp. 1–8. [Google Scholar]
- Li, L.; Lei, B.; Mao, C. Digital twin in smart manufacturing. J. Ind. Inf. Integr. 2022, 26, 100289. [Google Scholar] [CrossRef]
- Li, S.; Song, L.; Wang, J.; Li, S.; Lei, X. Decoupling active and passive hybrid radial magnetic bearing. In Proceedings of the 2015 International Conference on Control, Automation and Information Sciences (ICCAIS), Changshu, China, 29–31 October 2015; pp. 1–6. [Google Scholar]
- Ma, J.; Xu, F.; Huang, K.; Huang, R. GNAR-GARCH model and its application in feature extraction for rolling bearing fault diagnosis. Mech. Syst. Signal Process. 2017, 93, 175–203. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, L.; Yang, J.; Guan, Y. Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data. Sensors 2018, 18, 463. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, T.; Gao, W.; Zhang, C. A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network. Sensors 2018, 18, 1429. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/abs/1412.6980v9 (accessed on 21 November 2023).
- Yan, X.; Zhang, C.-A.; Liu, Y. Multi-branch convolutional neural network with generalized shaft orbit for fault diagnosis of active magnetic bearing-rotor system. Measurement 2020, 171, 108778. [Google Scholar] [CrossRef]
- Yan, X.; Sun, Z.; Zhao, J.; Shi, Z.; Zhang, C.-A. Fault Diagnosis of Active Magnetic Bearing–Rotor System via Vibration Images. Sensors 2019, 19, 244. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, S.; Song, L.; Cui, L. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals. Comput. Ind. 2018, 105, 182–190. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Xu, L.; Liu, L.; de Silva, C.W. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks. IEEE/ASME Trans. Mechatron. 2017, 23, 101–110. [Google Scholar] [CrossRef]
- Mao, W.; Feng, W.; Liu, Y.; Zhang, D.; Liang, X. A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis. Mech. Syst. Signal Process. 2020, 150, 107233. [Google Scholar] [CrossRef]
- Shenfield, A.; Howarth, M. A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults. Sensors 2020, 20, 5112. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiang, J.; Zhong, Y.; Zhou, Y. Convolutional neural network-based hidden Markov models for rolling element bearing fault identification. Knowl.-Based Syst. 2017, 144, 65–76. [Google Scholar] [CrossRef]
- Gan, M.; Wang, C.; Zhu, C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016, 72–73, 92–104. [Google Scholar] [CrossRef]
- Anwarsha, A.; Babu, T.N. Intelligent Fault Detection of Rotating Machinery Using Long-Short-Term Memory (LSTM) Network. In Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems; Spring: Cham, Switzerland, 2023; Volume 573, pp. 76–83. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Height of the stack | 71.42 mm |
Rotor diameter | 50 mm |
Operating air gap | 0.5 mm (radial) |
The outer diameter of the AMB | 140 mm |
The inner diameter of the AMB | 120 mm |
Number of turns | 80 |
Symbol | Parameter | Value | Unit |
---|---|---|---|
m | Rotor mass | 3.34 | kg |
Ip | Momentum of inertia | 0.00187 | kg⋅m2 |
ki | Current stiffness | 99 | N/A |
kx | Displacement stiffness | 473 | N/mm |
ks | Gain of displacement sensor | 5 | V/mm |
KP | Proportional coefficient of PID | 1.4 | |
KI | Integral coefficient of PID | 30 | |
KD | Differential coefficient of PID | 0.001 | |
kAD | Gain of A/D conversion | 4096/5 | |
kDA | Gain of D/A conversion | 5/4096 |
Rotation Speed (rpm) | Category | Number of Samples | Number of Training Samples | Number of Testing Samples |
---|---|---|---|---|
3000 | Normal | 11,251 | 1000 | 10,251 |
Imbalance | 5012 | 1000 | 4012 | |
Misalignment | 4120 | 1000 | 3120 | |
6000 | Normal | 12,001 | 1000 | 11,001 |
Imbalance | 5743 | 1000 | 4743 | |
Misalignment | 4490 | 1000 | 3490 | |
9000 | Normal | 12,256 | 1000 | 11,256 |
Imbalance | 6277 | 1000 | 5277 | |
Misalignment | 5295 | 1000 | 4295 | |
12,000 | Normal | 9501 | 1000 | 8501 |
Imbalance | 3420 | 1000 | 2420 | |
Misalignment | 2832 | 1000 | 1832 |
Algorithms | Accuracy |
---|---|
Digital twin–CNN | 99% |
SVI+MCNN [41] | 98.6% |
AdaBoos [42] | 95% |
Fault dictionary [12] | 93% |
CNN-A [43] | 92.9% |
CNN-B [44] | 96.3% |
sdAE [45] | 95.01% |
LSTM-WDCNN [46] | 96.2% |
CNN-HMMS [47] | 98% |
ANN [48] | 95.14% |
DBN [45] | 94.07% |
LSTM [49] | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Taha, O.W.; Yang, K. Fault Detection in Active Magnetic Bearings Using Digital Twin Technology. Appl. Sci. 2024, 14, 1384. https://doi.org/10.3390/app14041384
Hu Y, Taha OW, Yang K. Fault Detection in Active Magnetic Bearings Using Digital Twin Technology. Applied Sciences. 2024; 14(4):1384. https://doi.org/10.3390/app14041384
Chicago/Turabian StyleHu, Yefa, Omer W. Taha, and Kezhen Yang. 2024. "Fault Detection in Active Magnetic Bearings Using Digital Twin Technology" Applied Sciences 14, no. 4: 1384. https://doi.org/10.3390/app14041384
APA StyleHu, Y., Taha, O. W., & Yang, K. (2024). Fault Detection in Active Magnetic Bearings Using Digital Twin Technology. Applied Sciences, 14(4), 1384. https://doi.org/10.3390/app14041384