New Methods for Assessing External Sulfate Attack on Cement-Based Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling and Exposure Conditions
2.3. Test Method for Evaluating the Penetration Depth of Sulfate Ions
2.4. Optical Fiber-Based and Extensometer Methods for Measurement of ESA-Induced Expansion
3. Results
3.1. Visual Inspections
- After 12 weeks of exposure, a circumferential crack appeared at the exposed edge of the immersed base of the specimens (see Figure 5a).
- After 20 weeks, the cracks grew wider and larger, moving from the edges towards the center. Then the cylinders started to exhibit clearly visible crack patterns and began to lose their cohesion (Figure 5b).
- After 24 weeks, there was a significant deterioration of the cylinder at its immersed edge (see Figure 5c). At the periphery of the bottom base (immersed and not protected by epoxy), there was substantial damage and loss of cohesion, while at the center of this base, there were no visible signs of damage.
3.2. Sulfate Profiles
3.3. ESA-Induced Expansion Measurement Using Optical Fibers
4. Discussion
4.1. Discussion Regarding the Drying Method
4.2. Discussion Regarding ESA-Induced Expansion Measurement Using Optical Fibers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scrivener, K.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Habert, G.; Espinosa, A.; Roussel, N. Economic and environmental impact of Portland cement substitution by industrial by-products: A life-cycle assessment application in France. Resour. Conserv. Recycl. 2011, 57, 48–57. [Google Scholar]
- Scrivener, K.L.; Martirena, F.; Bishnoi, S. Alternative clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar]
- Xu, W.; Li, H.; Maruyama, I. Energy efficiency and CO2 emission reduction opportunities in the cement industry in China. Energy 2017, 141, 1466–1475. [Google Scholar]
- Hooper, D.; Woodward, D. Fiber Bragg Grating Sensors in Civil Infrastructure: A Review. IEEE Sens. J. 2019, 19, 9011–9024. [Google Scholar]
- Yingwu, Z.; Hao, T.; Lili, S.; Feng, X.; Ningxu, H. Strength Deterioration of Concrete in Sulfate Environment: An Experimental Study and Theoretical Modeling. Adv. Mater. Sci. Eng. 2015, 13, 951209. [Google Scholar]
- Menéndez, E.; García-Rovés, R.; Aldea, B.; Salem, Y. Review of the Incidence of the Sulphate Attack in Spain. Evaluation of Field Concrete Cases. In External Sulphate Attack—Field Aspects and Lab Tests; RILEM Bookserie; Menéndez, E., Baroghel-Bouny, V., Eds.; Springer: Cham, Switzerland, 2020; Volume 21. [Google Scholar] [CrossRef]
- Benkaddour, M.; Kenai, S.; Yahiaoui, W.; Bensaci, H.; Khatib, J. Rheological, mechanical and durability performance of some North African commercial binary and ternary cements. Case Stud. Constr. Mater. 2023, 19, e02689. [Google Scholar] [CrossRef]
- Amine, Y.; Leklou, N.; Amiri, O. Effect of supplementary cementitious materials (scm) on delayed ettringite formation in heat-cured concretes. Energy Procedia 2017, 139, 565–570. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.M.; Roussel, N.; Divet, L.; de Lacaillerie, J.B.D.E. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- El Inaty, F.; Marchetti, M.; Quiertant, M.; Omikrine Metalssi, O. Chemical Mechanisms Involved in the Coupled Attack of Sulfate and Chloride Ions on Low-Carbon Cementitious Materials: An In-Depth Study. Appl. Sci. 2023, 13, 11729. [Google Scholar] [CrossRef]
- Yin, G.J.; Wen, X.D.; Miao, L.; Cui, D.; Zuo, X.B.; Tang, Y.J. A Review on the Transport-Chemo-Mechanical Behavior in Concrete under External Sulfate Attack. Coatings 2023, 13, 174. [Google Scholar] [CrossRef]
- Thomas, P.; Ramu, Y.K.; Martin, L.; Vessalas, K.; Sirivivatnanon, V. Assessment of the Potential for Delayed Ettringite Formation in Heat Cured Mortars and Concrete Using Australian Materials. Constr. Mater. 2023, 3, 529–542. [Google Scholar] [CrossRef]
- Falaciński, P.; Machowska, A.; Szarek, Ł. The Impact of Chloride and Sulphate Aggressiveness on the Microstructure and Phase Composition of Fly Ash-Slag Mortar. Materials 2021, 14, 4430. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, M.; Black, L. Current knowledge of external sulfate attack. Adv. Cem. Res. 2015, 27, 532–545. [Google Scholar] [CrossRef]
- Irassar, E.F. Sulfate attack on cementitious materials containing limestone filler—A review. Cem. Concr. Res. 2009, 39, 241–254. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.; Yang, L.; Zhang, P.; Xu, H. Multiphysical damage characteristics of concrete exposed to external sulfate attack: Elucidating effect of drying–wetting cycles. Constr. Build. Mater. 2022, 329, 127143. [Google Scholar] [CrossRef]
- Zhong, C.; Huang, B. Deterioration Process of Cementitious Material Properties under Internal Sulphate Attack. Appl. Sci. 2023, 13, 3982. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Guan, J.; Zhou, X.; Guo, L. Fully coupled peridynamic model for analyzing the chemo-diffusion-mechanical behavior of sulfate attack in concrete. Constr. Build. Mater. 2023, 409, 133874. [Google Scholar] [CrossRef]
- Tixier, R.; Mobasher, B. Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments. J. Mater. Civ. Eng. 2003, 15, 314–322. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, S.; Lyu, H.; Chen, C.; Zou, D.; Zhou, A.; Li, Y.; Liu, T. A transport-chemical-physical–mechanical model for concrete subjected to external sulfate attack and drying–wetting cycles. Eng. Fract. Mech. 2023, 293, 109726. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Yang, J.; Zou, Y.; Wang, Z. Understanding of the deterioration characteristic of concrete exposed to external sulfate attack: Insight into mesoscopic pore structures. Constr. Build. Mater. 2020, 260, 119932. [Google Scholar] [CrossRef]
- Ikumi, T.; Segura, I. Numerical assessment of external sulfate attack in concrete structures. A review. Cem. Concr. Res. 2019, 121, 91–105. [Google Scholar] [CrossRef]
- Ejbouh, A.; Ech-chebab, A.; Hassi, S.; Galai, H.; Ebn Touhami, M. Durability assessment of LC3-based reinforced concrete under combined chloride-sulfate environment via the EIS technique. Constr. Build. Mater. 2023, 366, 130194. [Google Scholar] [CrossRef]
- Kowalska, M.; Grzesik, B.; Adamczyk, Z.; Nowak, J.; Konsek, A. Swelling of sulfate-bearing soil: A case study of A1 highway pavement failure. Case Stud. Constr. Mater. 2023, 18, e02081. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, X.; Luo, W. Long-term behaviors of concrete under low-concentration sulfate attack subjected to natural variation of environmental climate conditions. Cem. Concr. Res. 2019, 116, 217–230. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Al-Nehmi, A.J.A. Assessment of Chloride and Sulfate Concentrations in Concrete Using Laser-Induced Breakdown Spectroscopy (LIBS). Ph.D. Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2012. [Google Scholar]
- De Weerdt, K.; Justnes, H.; Geiker, M.R. Changes in the phase assemblage of concrete exposed to sea water. Cem. Concr. Compos. 2014, 47, 53–63. [Google Scholar] [CrossRef]
- Houk, R.S.; Thompson, J.J. Inductively coupled plasma mass spectrometry. Mass Spectrom. Rev. 1988, 7, 425–461. [Google Scholar] [CrossRef]
- Lohonyai, A.J.; Korany, Y.; Gül, M. Remote field monitoring of thermal and moisture deformations in masonry cavity wall building envelopes. J. Perform. Constr. Facil. 2015, 29, 4014072. [Google Scholar] [CrossRef]
- Laxman, K.C.; Tabassum, N.; Ai, L.; Cole, C.; Paul Ziehl, P. Automated crack detection and crack depth prediction for reinforced concrete structures using deep learning. Constr. Build. Mater. 2023, 370, 130709. [Google Scholar] [CrossRef]
- Li, R.; Yu, J.; Li, F.; Yang, R.; Wang, Y.; Peng, Z. Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Constr. Build. Mater. 2023, 362, 129659. [Google Scholar] [CrossRef]
- Kuchipudi, S.T.; Debdutta, G. Automated detection and segmentation of internal defects in reinforced concrete using deep learning on ultrasonic images. Constr. Build. Mater. 2024, 411, 134491. [Google Scholar] [CrossRef]
- Chen, F.; Gao, J.; Qi, B.; Shen, D. Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Constr. Build. Mater. 2017, 154, 849–856. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Doehne, E.; Sebastian, E. How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem. Concr. Res. 2000, 30, 1527–1534. [Google Scholar] [CrossRef]
- Bassuoni, M.T.; Nehdi, M.L. Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading. Cem. Concr. Res. 2009, 39, 206–226. [Google Scholar] [CrossRef]
- Tsui, N.; Flatt, R.; Scherer, G. Crystallization damage by sodium sulfate. J. Cult. Herit. 2003, 4, 109–115. [Google Scholar] [CrossRef]
- Müllauer, W.; Beddoe, R.E.; Heinz, D. Sulfate attack expansion mechanisms. Cem. Concr. Res. 2013, 52, 208–215. [Google Scholar] [CrossRef]
- Henault, J.-M.; Quiertant, M.; Delepine-Lesoille, S.; Salin, J.; Moreau, G.; Taillade, F.; Benzarti, K. Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system. Constr. Build. Mater. 2012, 37, 916–923. [Google Scholar] [CrossRef]
- Rolland, A.; Quiertant, M.; Khadour, A.; Chataigner, S.; Benzarti, K.; Argoul, P. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars. Constr. Build. Mater. 2018, 173, 136–148. [Google Scholar] [CrossRef]
- Omikrine Metalssi, O.; Kchakech, B.; Lavaud, S.; Godart, B. A new model for the analysis of the structural/mechanical performance of concrete structures affected by DEF–Case study of an existing viaduct. Struct. Concr. 2016, 17, 1104–1113. [Google Scholar] [CrossRef]
- Martin, R.-P.; Omikrine Metalssi, O.; Toutlemonde, F. Importance of considering the coupling between transfer properties, alkali leaching and expansion in the modelling of concrete beams affected by internal swelling reactions. Constr. Build. Mater. 2013, 49, 23–30. [Google Scholar] [CrossRef]
- Jabbour, M. Multi-Scale Study of the External Sulphate Attack in Reinforced Concrete Structures. Ph.D. Thesis, Gustave Eiffel University, Champs-sur-Marne, France, 2019. [Google Scholar]
- Ragoug, R. External Sulphate Attack of Cementitious Materials: Impact of Different Age Factors, Binder Composition, Chloride Presence. Ph.D. Thesis, Gustave Eiffel University, Champs-sur-Marne, France, 2016. [Google Scholar]
- Jabbour, M.; Metalssi, O.O.; Quiertant, M.; Baroghel-Bouny, V. A Critical Review of Existing Test-Methods for External Sulfate Attack. Materials 2022, 15, 7554. [Google Scholar] [CrossRef] [PubMed]
Components | wt % |
---|---|
CaO | 62.79 |
SiO2 | 20.38 |
Al2O3 | 4.30 |
TiO2 | 0.24 |
Fe2O3 | 3.80 |
MgO | 1.25 |
SO3 | 3.46 |
S | Traces |
K2O | 0.73 |
Na2O | 0.35 |
Chlorides | 0.04 |
MnO | 0.05 |
LOI (loss on ignition) | 2.04 |
Insoluble | 0.54 |
∑ | 99.97 |
Free lime | 1.39 |
Components | Mass Content Based on Bogue Equation % |
---|---|
C3S | 57.05 |
C2S | 14.99 |
C3A | 7.91 |
C4AF | 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omikrine Metalssi, O.; Quiertant, M.; Jabbour, M.; Baroghel-Bouny, V. New Methods for Assessing External Sulfate Attack on Cement-Based Specimens. Appl. Sci. 2024, 14, 1410. https://doi.org/10.3390/app14041410
Omikrine Metalssi O, Quiertant M, Jabbour M, Baroghel-Bouny V. New Methods for Assessing External Sulfate Attack on Cement-Based Specimens. Applied Sciences. 2024; 14(4):1410. https://doi.org/10.3390/app14041410
Chicago/Turabian StyleOmikrine Metalssi, Othman, Marc Quiertant, Mike Jabbour, and Véronique Baroghel-Bouny. 2024. "New Methods for Assessing External Sulfate Attack on Cement-Based Specimens" Applied Sciences 14, no. 4: 1410. https://doi.org/10.3390/app14041410
APA StyleOmikrine Metalssi, O., Quiertant, M., Jabbour, M., & Baroghel-Bouny, V. (2024). New Methods for Assessing External Sulfate Attack on Cement-Based Specimens. Applied Sciences, 14(4), 1410. https://doi.org/10.3390/app14041410