Next Article in Journal
Influence of Material on the Density of a Point Cloud Created Using a Structured-Light 3D Scanner
Next Article in Special Issue
Critical Ergonomics and (Dis)Comfort Factors While Performing Tasks with Hand Tools on a Ladder: A Pilot Study
Previous Article in Journal
Experimental Study on Mechanical Properties of Anisotropic Slate under Different Water Contents
Previous Article in Special Issue
An Ergonomic Study on the Operation Method and In-Vehicle Location of an Automotive Electronic Gearshift
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Lean Manufacturing Assessment: Dimensional Analysis with Hesitant Fuzzy Linguistic Term Sets

by
William Alexander Chitiva-Enciso
,
Luis Asunción Pérez-Domínguez
*,
Roberto Romero-López
,
David Luviano-Cruz
,
Iván Juan Carlos Pérez-Olguín
and
Luis Carlos Méndez-González
Departamento de Ingeniería Industrial y Manufactura, Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles 1210 Fovissste Chamizal, Ciudad Juárez 32310, Mexico
*
Author to whom correspondence should be addressed.
Appl. Sci. 2024, 14(4), 1475; https://doi.org/10.3390/app14041475
Submission received: 27 December 2023 / Revised: 7 February 2024 / Accepted: 8 February 2024 / Published: 11 February 2024
(This article belongs to the Special Issue Advances in Manufacturing Ergonomics)

Abstract

:
Lean Manufacturing has become, in recent years, one of the most important philosophies for improving production and organizational systems. The literature shows that Hesitant Fuzzy Linguistic Terms Sets (HFLTSs) are highly capable of manipulating the uncertainty that the judgments made by evaluators carry and that they are subject to their perception, especially when used in combination with multicriteria decision making (MCDM) for the measurement of indicators in this type of system, as well as their general performance. However, it is still of interest to researchers to develop techniques and instruments that facilitate the measurement of the results obtained after applying this philosophy in organizations. This article proposes a model for the evaluation of the Lean Manufacturing performance through the Analytic Hierarchy Process (AHP) and Dimensional Analysis (DA) using HFLTSs. The results obtained show that the proposed model is a solid tool for the evaluation of Lean Manufacturing systems from a different perspective and that it can be integrated into the issuance of evaluations in a better way by considering human subjectivity. At the same time, it offers a strategy to create priorities in the action plans that Lean system managers propose after evaluating. However, it is important to apply the proposed model to multiple organizations and analyze the results obtained to maximize its benefits.

1. Introduction

Lean Manufacturing is a set of functional tools for reducing waste and increasing productivity in industries through the implementation of a culture of continuous improvement in production systems and organizational activities [1]. In this mode, those functional tools are immersed in a context of continuous improvement that implies establishing indicators that can be measured to implement improvement actions in organizations in such a way that multiple research studies have been carried out that address this topic [2,3]. Lean Manufacturing is important for the improvement in production systems and requires continuous improvement to be effective [4]. The Lean approach is a way of organizing production and service that focuses on waste elimination. Waste is any activity that does not add value to the final product or service. By eliminating waste, the Lean approach can improve efficiency, productivity, revenue, and customer value [5].
In another way, multicriteria decision making (MCDM) is a methodology that helps with decision making by comparing alternatives based on multiple criteria and preferences [6,7]. Numeric values do not always reflect real human preferences, so they may be inadequate for decision making in complex situations [8]. Over the years, MCDM has become a topic of high interest to researchers, who have worked on these methods in order to solve problems from multiple dimensions and developed strategies that lead to the optimization of the prioritization of alternatives [9,10]. Likewise, the literature shows that the use of MCDM approaches in fuzzy environments, like the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [11,12], Analytic Network Process (ANP) [13], Programmation Methodes Evaluating Expert Choices (PROMETHEE) [14], Simple Additive Weighting (SAW) [15], Elimination and Choice Translating Reality (ELECTRE) [16], Multicriteria Optimization and Compromise Solution (VIKOR) [17,18], Decision Making Trial and Evaluation Laboratory (DEMATEL) [19], and Analytic Hierarchy Process (AHP) [20,21], applied to Lean Manufacturing can be an alternative for the management of this type of processes, but it can also be applied in aspects such as failure reduction, supplier selection, or the application of environmentally sustainable practices.
Thereby, Dimensional Analysis (DA) is a mathematical method that allows you to combine different attributes with different units of measurement into a single number. This is useful for problems where you need to compare or rank different options but the attributes you are considering are not directly comparable [22,23]. However, DA is not as good at handling imprecise or subjective information, which is common in MCDM problems [24]. Rodriguez et al. [25] propose the Hesitant Fuzzy Linguistic Terms Sets (HFLTSs) as an alternative that provides flexibility to decision makers, allowing for the use of linguistic variables to express their evaluations [26], and at the same time, it is close to human language [27,28]. In other words, terms such as “good”, “bad”, “excellent”, or “poor” are assimilated more effectively into the human cognitive system and facilitate decision making when contrasting an indicator against multiple criteria [29,30].
Besides, the Key Performance Indicators (KPIs) allow for the performance of an organization or an area of it to be measured in quantitative terms in such a way that when evaluating them, it expresses the success obtained, and these have a guiding function for the creation of strategies but are also motivational for managers and work teams to achieve goals [31]. Published works such as [32] propose the use of MCDM in new works for the prioritization of KPIs. The use of MCDM is viable for prioritizing KPIs, as evidenced in [33], and evaluating performance in industrial systems, as shown in [34]. However, it is often difficult to assess Lean Manufacturing KPIs, set priorities to improve performance, and design an action plan, taking multiple criteria into consideration [12].
The main contributions of this paper are:
  • A novel hybrid model of Dimensional Analysis (DA) and Hesitant Fuzzy Linguistic Terms Sets (HFLTSs) for a Lean Manufacturing performance assessment as an alternative to prioritize continuous improvement and maximize productivity from a Fuzzy Linguistic Terms Sets perspective.
  • To propose the use of HFLTSs to evaluate KPIs, managing the uncertainty of value judgments that arise from the evaluators’ perceptions.
  • To identify KPIs that are priorities for the design of action plans.
  • To demonstrate the applicability of the proposed mathematical model for the evaluation of Lean Manufacturing systems.
The structure of this paper is as follows: The basic concepts are reviewed in Section 2. The problem and research methodology are illustrated in Section 3. The illustrative case is described in Section 4. The results and discussions are presented in Section 5. Finally, conclusions and avenues for future directions are drawn in Section 6.

2. Basic Concepts

This section addresses the basic concepts necessary for research on HFLTSs and DA.

2.1. Hesitant Fuzzy Linguistic Term Sets

Definition 1
([25]). Let S be a set of linguistic terms S = { S 0 S g } of an HFLTS; HS is a finite ordered subset of the consecutive linguistic terms of S, where S is defined as the set of linguistic terms S = { S 0 S g } to define the empty HFLTS and the complete HFLTS for a linguistic variable ϑ as follows:
empty HFLTS: H S ( ϑ ) = 0 ,
filled HFLTS: H S ( ϑ ) = S .
In other words, a set of linguistic terms can be interpreted as a scale that groups together the evaluations that an evaluator can issue on a performance indicator. Lean system managers generally measure the performance of their systems through quantitative values. However, sets of linguistic terms represent an alternative to making judgments by using qualitative values that are more easily integrated into human psychology and that are associated with numerical values for mathematical manipulation. Definition 2 shows the set of linguistic terms proposed for our method.
Definition 2.
Let S be a set of linguistic terms, S = ( S 1 : n u l l , S 2 : i n s i g n i f i c a n t , S 3 : A l m o s t i n s i g n i f i c a n t , S 4 : N e u t r a l , S 5 : G o o d , S 6 : O u t s t a n d i n g , S 7 : E x c e l l e n t ) .
Definition 3
([25]). The upper bound H S + and lower bound H S of the HFLTS H S are defined as
H { S + } = m a x ( s i ) = S j , S i H S and S i S j i ;
H { S } = m i n ( s i ) = S j , S i H S and S i S j i .
Definition 4
([25]). The envelope of the HFLTSs, env(HS), is a linguistic interval whose limits are obtained by means of an upper bound (max) and lower bound (min). Hence,
e n v ( H S ) = [ H S , H S + ]
Definition 5
([25]). Let H S 1 and H S 2 be the two HFLTS and e n v ( H S 1 ) = [ s p , s q ] and e n v ( H S 2 ) = [ s p , s q ] , then
d ( H S 1 , H S 2 ) = | q q | + | p p |
is called the distance between H S 1 and H S 2 . Where
  • d is the distance between H S 1 and H S 2 .
  • p and p are the minimum value for H S 1 and H S 2 , respectively;
  • q and q are the maximum value for H S 1 and H S 2 , respectively.

2.2. Dimensional Analysis

Dimensional Analysis (DA) is an MCDM that generates an index of similarity that allows one to compare each alternative with an ideal solution, where the alternative closest to the ideal solution is the preferred one [24].
Definition 6.
Let R i j be the decision matrix of size m x n ; the index of similarity I S i will be obtained from the Dimensional Analysis from
I S i = i = 1 n ( D i j A i ) W i and A i 1
Applying logarithm properties, the above equation can be written as
I S i = i = 1 n W i [ ln ( D i j ) ln ( A i ) ] and A i 1
where:
  • I S i is the similarity index of each K P I i to the ideal solution;
  • W i is the weight of the C i with respect to all criteria, calculated by using AHP;
  • D i j is each ij value from the D matrix;
  • A i is the i value from vector A for each D i j .

3. Method

Uncertain and imprecise data and information are typically present in MCDM problems. We present a distance between two HFLTSs that may be computed with the aid of HFLTS envelopes for the comprehensive design of steps for DA in HFLTSs. Figure 1 shows the proposed method in general terms in order to facilitate its visualization.
Therefore, the distance between two linguistic intervals can be calculated through the previous definition. After this, a method for measuring Lean Manufacturing is proposed, which is developed with the following steps:
Step 1. Determine X l = [ H S i j ] m x n as a fuzzy evaluation matrix for the Lean Manufacturing assessment. The following notations are used to depict the considered problems:
E = e 1 , e 2 , . . . , e k is the set of performance evaluators, and A = C 1 , C 2 , . . . , C n is the set of criteria used for evaluating the indicators.
The performance of alternative A i with respect to a performance evaluator e i and criterion C j is denoted as H S i j in a group decision environment with K persons.
Step 2. We calculate the one assessment matrix X by aggregating the perceptions of performance evaluators ( X 1 , X 2 , . . . , X K ) , where
s p i j = min { min l = 1 K ( max H S i j l ) , max l = 1 K ( min H S i j l ) }
and
s q i j = max { min ( max H S i j l ) , max ( min H S i j l ) }
The performance of indicator K P I i with respect to criterion C j is denoted as x i j in an aggregated matrix X.
Step 3. Establish the weighting of the evaluation criteria in the vector w i by using the Analytical Hierarchical Process (AHP) according to the method proposed by [35].
Step 4. Calculate the ideal solution vector A by using Equation (9): Let be a collection of benefit criteria (i.e., the larger C j , the greater the preference) and A be a collection of the cost criteria (i.e., the smaller C j , the greater the preference). The HFLTS ideal solution denoted as A = ( A 1 , A 2 , . . . , A n ) is defined as follows:
A = [ ( ( max l = 1 K ( max i H S i j l ) ) | j Ω b , ( min l = 1 K ( min i H S i j l ) ) | j Ω c ) , ( ( max l = 1 K ( max i H S i j l ) ) | j Ω b , ( min l = 1 K ( min i H S i j l ) ) | j Ω c ) ]
i = 1 , 2 , . . . , m ,
A = ( A 1 , A 2 , . . . , A n )
where A j = [ a p j , a q j ] ( j = 1 , 2 , . . . , n ) .
Step 5. Construct an ideal separation matrix D, which is defined as follows:
D = d ( l n ( x 11 ) , l n ( A 1 ) ) + d ( l n ( x 12 ) , l n ( A 2 ) ) + + d ( l n ( x 1 n ) , l n ( A n ) ) d ( l n ( x 21 ) , l n ( A 1 ) ) + d ( l n ( x 22 ) , l n ( A 2 ) ) + + d ( l n ( x 2 n ) , l n ( A n ) ) d ( l n ( x m 1 ) , l n ( A 1 ) ) + d ( l n ( x m 2 ) , l n ( A 2 ) ) + + d ( l n ( x m n ) , l n ( A n ) )
Step 6. For each element C j , the product with its respective W j will be calculated in such a way that
D w = ( D 11 ) ( w 1 ) + ( D 12 ) ( w 2 ) + + ( D 1 n ) ( w j ) ( D 21 ) ( w 1 ) + ( D 22 ) ( w 2 ) + + ( D 2 n ) ( w j ) ( D m 1 ) ( w 1 ) + ( D m 2 ) ( w 2 ) + + ( D m n ) ( w j )
Step 7. Ranking the KPIs.

4. Illustrative Case

To illustrate the proposed model, the case proposed by [12] for the assessment of the Lean Manufacturing performance was used as an experiment. This case presents a real-life example, which was applied in an automotive company based in Ciudad Juárez, Chihuahua, Mexico. The company uses an LM methodology and focuses on minimizing operational waste; thus, managers are particularly interested in assessing the real impact of the LM methodology. For this, a team of performance evaluators first assessed the company’s LM implementation improvement metrics. Simultaneously, the case described the set of criteria and the KPIs depicted like alternatives as follows: C 1 : defects, C 2 : productivity, C 3 : lead time, C 4 : customer, C 5 : demand satisfaction, C 6 : cycle time, C 7 : tack time, C 8 : effectiveness, C 9 : levels of inventory, and C 10 : suppliers. Additionally, during the evaluation of Lean projects, nineteen alternatives to be considered are summarized: K P I 1 : sales, K P I 2 : market share, K P I 3 : maintenance, K P I 4 : OEE, K P I 5 : on-time delivery, K P I 6 : 5S, K P I 7 : kaizen, K P I 8 : bottleneck removal, K P I 9 : cross-functional work force, K P I 10 : focused factory production, K P I 11 : JIT/continuous flow production, K P I 12 : lot size reductions, K P I 13 : maintenance optimization, K P I 14 : process capability measurements, K P I 15 : kanban, K P I 16 : quick changeover, K P I 17 : total quality management, K P I 18 : self-directed work teams, and K P I 19 : safety improvement programs.
Step 1. Determine the fuzzy evaluation matrix X l = [ H S i j ] for the MCDM problem. KPIs are evaluated with respect to each of the criteria. The performance evaluators e 1 , e 2 , and e 3 establish the X 1 matrix in Table 1, while the performance evaluators e 4 , e 5 , and e 6 establish the X 2 matrix in Table 2.
Step 2. We calculate the aggregated matrix X l by using Equations (7) and (8). For this, we take the matrix X 1 and X 2 . Table 3 shows the obtained X l matrix.
Step 3. Establish the ponderation for each one of the criteria called through vector ω j for the performance evaluation by using an Analytic Hierarchy Process (AHP) method proposed by [35]. Appraise the criteria with respect to DM preferences. Table 4 shows AHP matrix:
ω j = ( 0.237 , 0.243 , 0.174 , 0.104 , 0.049 , 0.072 , 0.056 , 0.024 , 0.022 , 0.019 )
Step 4. Calculate the ideal solution vector A by using Equation (9):
A = ( { S 1 , S 2 } , { S 7 , S 7 } , { S 1 , S 2 } , { S 7 , S 7 } , { S 7 , S 7 } , { S 7 , S 7 } , { S 7 , S 7 } , { S 7 , S 7 } , { S 7 , S 7 } , { S 7 , S 7 } )
Step 5. Construct the distance matrix D by using Equation (10) as shown in Table 5. Next, sum the values obtained in the D matrix as shown in Table 6.
Step 6. The matrix obtained in the previous step is taken and each value is multiplied with the respective W j . Table 7 depicts the product between the matrix obtained in step 6 and the vector W j .
Step 7. The final ranking is calculated from the product of the values obtained by each row i in the previous matrix. In this sense, Table 8 shows the final ranking calculated.

5. Results Analysis and Discussion

The results of the final ranking show that K P I 19 , K P I 18 , and K P I 17 are at a better level than the others, while it quickly allows K P I 6 , K P I 10 , and K P I 15 to be established at a priority level.
The ranking obtained in the case study was compared with that obtained by [12]. The basic statistics in Table 9 were calculated by using statistical software. The mean and standard deviation have differences as a consequence of the Dimensional Analysis model assigning three KPIs in the last position as a tie.
Table 10 shows the comparison between the ranking obtained by [12] and the ranking obtained with the proposed method. Notable differences are evident in most of the KPIs, with the exception of K P I 7 , K P I 12 , K P I 13 , and K P I 15 . The variation in the results could be explained by the variation in the set of linguistic terms used for each evaluation. However, repetition of the two methods in other Lean systems would be necessary to analyze the pattern of behavior in the results.
Table 11 depicts the covariance matrix showing different variance values for each method, as well as the negative covariance that allows us to presume an inverse relationship between the rankings obtained through each methodology.
In addition to the similarity index obtained in the illustrative case, 15 more iterations were carried out as part of a sensibility analysis, and the results are depicted in Table 12 and Table 13.
The line graph in Figure 2 shows that the iterations, including the initial solution, have similar behavior even though the weight vector changed. All the iterations carried out yield the same ranking for the evaluated KPIs.
The weighting vector was randomly changed to compare the results obtained. An analysis of variance was applied between the 16 calculated iterations. The p-value indicates that the variation in the similarity indices obtained can not be explained. The analysis of variance is shown in Table 14.
Table 15 shows the results of Tukey’s pairwise comparison. This analysis allows us to affirm that there are no significant differences between the means of the iterations.
Fisher’s pairwise comparisons allow us to affirm that there are no significant differences between the means of the calculated iterations. Table 16 shows Fisher’s pairwise comparison.
Dunnett’s multiple comparisons were performed by using the initial solution ( I T 0 ) as control data. The results show that there are no significant differences between the means. This analysis is shown in Table 17.

6. Conclusions

The measurement of Lean Manufacturing performance indicators is a challenge faced by both experts and managers who must make decisions about their organizations. The presented method in this research constitutes a novel alternative to evaluate Lean Manufacturing systems by using a human perspective with a mathematical method such as DA to easily identify the KPIs that require action plans to guarantee the continuous improvement sought by the implemented Lean strategies. In summary, first of all, this method compares the criteria with each other. Second, group the diffuse perceptions that arise when evaluating each of these. And finally, the mathematical structure of the proposed method allows us to easily identify the indicators that require priority action plans for improvement.
The creation of action plans that meet the needs of implemented Lean systems continues to be a challenge that organizations must assume as part of the continuous improvement processes. The proposed method facilitates the identification of KPIs that should be considered a high priority for Lean system managers, who face the challenges of continuously improving their organizations.
It is expected that, by applying the proposed methodology, organizations will find a path that facilitates cost minimization and profit maximization. MCDM is a research topic that has gained importance in the management of production systems, and this hybridization could represent an alternative to the classical quantitative approach for the Lean Systems assessment. As part of future work, it is planned to develop software to implement the tool systematically in organizations. Likewise, it is contemplated to use neural networks and optimization algorithms to make simultaneous comparisons.
Given the contributions stated in the introduction, it is possible to affirm that:
  • A novel model has been proposed that combines the mathematical technique of Dimensional Analysis with HFLTS to evaluate Lean Manufacturing.
  • This method avoids directly evaluating KPIs with quantitative values and makes use of linguistic terms adjusted to human psychology, facilitating the making of judgments.
  • The results of the illustrative case show that the mathematical structure of the model leads to easily identifying the KPIs that deviate from the ideal solution and require prioritization in continuous improvement plans.
  • It is feasible to apply the proposed method to manufacturing companies. However, the results could be compared with those obtained with other similar methods to study the behavior of the rankings obtained.
Future works could aim to implement the strategy presented in other problems, such as the choice of suppliers or human resources, among others. Also, they could consider the use of techniques such as neural networks, machine learning, and other metaheuristic models that expand the possibilities and maximize the benefits of the proposed model.

Author Contributions

Conceptualization, W.A.C.-E. and L.A.P.-D.; methodology, L.A.P.-D.; validation, W.A.C.-E., L.A.P.-D. and R.R.-L.; formal analysis, W.A.C.-E. and L.A.P.-D.; investigation, W.A.C.-E. and L.A.P.-D.; resources, D.L.-C. and I.J.C.P.-O.; data curation, D.L.-C. and L.C.M.-G.; writing—original draft preparation, W.A.C.-E. and L.A.P.-D.; writing—review and editing, R.R.-L., D.L.-C. and I.J.C.P.-O.; visualization, D.L.-C. and L.C.M.-G.; supervision, L.A.P.-D.; project administration, R.R.-L., D.L.-C. and I.J.C.P.-O.; funding acquisition, R.R.-L., D.L.-C. and I.J.C.P.-O. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially supported with resources by the Universidad Autonoma de Ciudad Juárez and the National Council of Humanities Science and Technology (CONAHCYT).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Acknowledgments

We would like to thank the Departamento de Ingeniería Industrial y Manufactura, Universidad Autónoma de Ciudad Juárez via Industrial Engineering Master Coordination for providing full support so that this project could be prepared, as well as the National Council of Humanities Science and Technology (CONAHCYT).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Palange, A.; Dhatrak, P. Lean manufacturing a vital tool to enhance productivity in manufacturing. Mater. Today Proc. 2021, 46, 729–736. [Google Scholar] [CrossRef]
  2. Ahmed, R.A.H.S. Roadmap for continuous quality improvement and sustainability: A case study in Egyptian service sector organisation. Int. J. Product. Qual. Manag. 2010, 6, 318–331. [Google Scholar] [CrossRef]
  3. Albzeirat, M.K.; Hussain, M.I.; Ahmad, R.; Salahuddin, A.; Al-Saraireh, F.M.; Bin-Abdun, N. Literature review: Lean manufacturing assessment during the time period (2008–2017). Int. J. Eng. Manag. 2018, 2, 29–46. [Google Scholar] [CrossRef]
  4. Singh, J.; Singh, H.; Singh, G. Productivity improvement using lean manufacturing in manufacturing industry of Northern India: A case study. Int. J. Product. Perform. Manag. 2018, 67, 1394–1415. [Google Scholar] [CrossRef]
  5. Debnath, B.; Shakur, M.S.; Bari, A.M.; Karmaker, C.L. A Bayesian Best–Worst approach for assessing the critical success factors in sustainable lean manufacturing. Decis. Anal. J. 2023, 6, 100157. [Google Scholar] [CrossRef]
  6. Sahoo, S.K.; Goswami, S.S. A comprehensive review of multiple criteria decision-making (MCDM) Methods: Advancements, applications, and future directions. Decis. Mak. Adv. 2023, 1, 25–48. [Google Scholar] [CrossRef]
  7. Taherdoost, H.; Madanchian, M. Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
  8. Beg, I.; Rashid, T. TOPSIS for hesitant fuzzy linguistic term sets. Int. J. Intell. Syst. 2013, 28, 1162–1171. [Google Scholar] [CrossRef]
  9. Boix-Cots, D.; Pardo-Bosch, F.; Alvarez, P.P. A systematic review on multi-criteria group decision-making methods based on weights: Analysis and classification scheme. Inf. Fusion 2023, 96, 16–36. [Google Scholar] [CrossRef]
  10. Xian, S.; Ma, D.; Feng, X. Z hesitant fuzzy linguistic term set and their applications to multi-criteria decision making problems. Expert Syst. Appl. 2024, 238, 121786. [Google Scholar] [CrossRef]
  11. Nădăban, S.; Dzitac, S.; Dzitac, I. Fuzzy TOPSIS: A general view. Procedia Comput. Sci. 2016, 91, 823–831. [Google Scholar] [CrossRef]
  12. Pérez-Domínguez, L.; Luviano-Cruz, D.; Valles-Rosales, D.; Hernández Hernández, J.I.; Rodríguez Borbón, M.I. Hesitant fuzzy linguistic term and TOPSIS to assess lean performance. Appl. Sci. 2019, 9, 873. [Google Scholar] [CrossRef]
  13. Dargi, A.; Anjomshoae, A.; Galankashi, M.R.; Memari, A.; Tap, M.B.M. Supplier selection: A fuzzy-ANP approach. Procedia Comput. Sci. 2014, 31, 691–700. [Google Scholar] [CrossRef]
  14. Peng, Y.; Kou, G.; Li, J. A fuzzy PROMETHEE approach for mining customer reviews in Chinese. Arab. J. Sci. Eng. 2014, 39, 5245–5252. [Google Scholar] [CrossRef]
  15. Wang, Y.J. A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Appl. Soft Comput. 2015, 30, 412–420. [Google Scholar] [CrossRef]
  16. Ghodasara, P.; Yadav, G.; Seth, D.; Desai, T.N. A Hybrid Fuzzy AHP-ELECTRE approach to rank Lean Six Sigma solutions: Case experience of a manufacturing organisation. In Proceedings of the ICIE 2017, St. Petersburg, Russia, 16–19 May 2017; pp. 1159–1167. [Google Scholar]
  17. Bhalaji, R.; Bathrinath, S.; Saravanasankar, S. A Fuzzy VIKOR method to analyze the risks in lean manufacturing implementation. Mater. Today Proc. 2021, 45, 1294–1299. [Google Scholar] [CrossRef]
  18. Ying-Yu, W.; De-Jian, Y. Extended VIKOR for multi-criteria decision making problems under intuitionistic environment. In Proceedings of the 2011 International Conference on Management Science & Engineering 18th Annual Conference, Rome, Italy, 13–15 September 2011; IEEE: New York, NY, USA, 2011; pp. 118–122. [Google Scholar]
  19. Soltani, M.; Aouag, H.; Anass, C.; Mouss, M.D. Development of an advanced application process of Lean Manufacturing approach based on a new integrated MCDM method under Pythagorean fuzzy environment. J. Clean. Prod. 2023, 386, 135731. [Google Scholar] [CrossRef]
  20. Kahraman, C.; Cebeci, U.; Ulukan, Z. Multi-criteria supplier selection using fuzzy AHP. Logist. Inf. Manag. 2003, 16, 382–394. [Google Scholar] [CrossRef]
  21. Thanki, S.; Govindan, K.; Thakkar, J. An investigation on lean-green implementation practices in Indian SMEs using analytical hierarchy process (AHP) approach. J. Clean. Prod. 2016, 135, 284–298. [Google Scholar] [CrossRef]
  22. Gómez Bull, K.G.; Cano Ramírez, J. Análisis dimensional para evaluación y selección de una computadora portátil (laptop). Cult. Cien. Tecnol. 2015, 45, 79–87. [Google Scholar]
  23. Pérez-Domínguez, L.; Alvarado-Iniesta, A.; García-Alcaráz, J.L.; Valles-Rosales, D. Intuitionistic fuzzy dimensional analysis for multi-criteria decision making. Iran. J. Fuzzy Syst. 2018, 15, 17–40. [Google Scholar]
  24. Villa Silva, A.J.; Pérez Dominguez, L.A.; Martínez Gómez, E.; Alvarado-Iniesta, A.; Pérez Olguín, I.J.C. Dimensional analysis under pythagorean fuzzy approach for supplier selection. Symmetry 2019, 11, 336. [Google Scholar] [CrossRef]
  25. Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2011, 20, 109–119. [Google Scholar] [CrossRef]
  26. Liao, H.; Wang, J.; Tang, M.; Al-Barakati, A. An Overview of Interval Analysis Techniques and Their Fuzzy Extensions in Multi-Criteria Decision-Making: What’s Going on and What’s Next? Int. J. Fuzzy Syst. 2023, 25, 1–28. [Google Scholar] [CrossRef]
  27. Lima-Junior, F.R.; Oliveira, M.E.B.d.; Resende, C.H.L. An Overview of Applications of Hesitant Fuzzy Linguistic Term Sets in Supply Chain Management: The State of the Art and Future Directions. Mathematics 2023, 11, 2814. [Google Scholar] [CrossRef]
  28. Das, S.; De, S. Strengths, weaknesses, opportunities and threats determination and strategy prioritization using hesitant fuzzy decision-making approach for better energy sustainability: Demonstration with Indian data. Energy Convers. Manag. 2023, 281, 116847. [Google Scholar] [CrossRef]
  29. Ali, J.; Al-Kenani, A.N. Vector similarity measures of dual hesitant fuzzy linguistic term sets and their applications. Symmetry 2023, 15, 471. [Google Scholar] [CrossRef]
  30. Zhang, P.; Zhang, Z.; Gong, D.; Cui, X. A novel normal wiggly hesitant fuzzy multi-criteria group decision making method and its application to electric vehicle charging station location. Expert Syst. Appl. 2023, 223, 119876. [Google Scholar] [CrossRef]
  31. Velimirović, D.; Velimirović, M.; Stanković, R. Role and importance of key performance indicators measurement. Serbian J. Manag. 2011, 6, 63–72. [Google Scholar] [CrossRef]
  32. Singh, C.; Singh, D.; Khamba, J. Understanding the key performance parameters of green lean performance in manufacturing industries. Mater. Today Proc. 2021, 46, 111–115. [Google Scholar] [CrossRef]
  33. Podgórski, D. Measuring operational performance of OSH management system—A demonstration of AHP-based selection of leading key performance indicators. Saf. Sci. 2015, 73, 146–166. [Google Scholar] [CrossRef]
  34. Sufiyan, M.; Haleem, A.; Khan, S.; Khan, M.I. Evaluating food supply chain performance using hybrid fuzzy MCDM technique. Sustain. Prod. Consum. 2019, 20, 40–57. [Google Scholar] [CrossRef]
  35. Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
Figure 1. Flowchart of the algorithm to evaluate Lean Manufacturing by using HFLTS and DA.
Figure 1. Flowchart of the algorithm to evaluate Lean Manufacturing by using HFLTS and DA.
Applsci 14 01475 g001
Figure 2. Linear behavior of calculated iterations.
Figure 2. Linear behavior of calculated iterations.
Applsci 14 01475 g002
Table 1. X 1 matrix.
Table 1. X 1 matrix.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
K P I 1 { S 4 , S 7 } { S 4 , S 5 , S 7 } { S 1 , S 2 , S 3 } { S 1 , S 3 , S 5 } { S 4 , S 5 } { S 1 , S 3 } { S 4 , S 6 , S 7 } { S 6 , S 7 } { S 7 } { S 3 , S 4 , S 7 }
K P I 2 { S 3 , S 4 , S 5 } { S 1 , S 3 , S 5 } { S 4 , S 5 , S 6 } { S 4 , S 5 , S 6 } { S 2 , S 4 , S 6 } { S 2 , S 3 , S 5 } { S 1 , S 2 } { S 5 , S 6 , S 7 } { S 5 , S 6 } { S 1 , S 3 , S 4 }
K P I 3 { S 2 , S 4 , S 6 } { S 2 , S 3 , S 4 } { S 5 , S 6 , S 7 } { S 1 , S 2 , S 3 } { S 5 , S 6 , S 7 } { S 4 , S 5 , S 7 } { S 4 , S 5 , S 6 } { S 7 } { S 6 , S 7 } { S 1 }
K P I 4 { S 3 , S 5 , S 7 } { S 5 , S 7 } { S 1 , S 3 , S 4 } { S 1 , S 3 , S 4 } { S 1 , S 3 } { S 5 , S 6 , S 7 } { S 4 , S 6 , S 7 } { S 4 , S 5 , S 7 } { S 6 , S 7 } { S 2 , S 3 , S 4 }
K P I 5 { S 1 , S 2 } { S 5 , S 6 } { S 5 , S 6 } { S 1 , S 2 } { S 4 , S 5 , S 7 } { S 3 , S 4 , S 6 } { S 5 , S 6 , S 7 } { S 4 , S 6 } { S 1 , S 3 } { S 5 , S 6 , S 7 }
K P I 6 { S 3 , S 5 , S 6 } { S 4 , S 5 , S 6 } { S 1 , S 3 , S 4 } { S 2 , S 3 } { S 6 , S 7 } { S 2 , S 3 } { S 4 , S 5 , S 7 } { S 6 , S 7 } { S 1 , S 2 , S 5 } { S 6 , S 7 }
K P I 7 { S 1 , S 4 } { S 1 , S 2 } { S 2 , S 3 } { S 1 , S 2 } { S 1 , S 3 , S 4 } { S 3 , S 4 } { S 1 , S 3 , S 6 } { S 5 , S 6 } { S 4 , S 5 , S 7 } { S 6 , S 7 }
K P I 8 { S 5 , S 7 } { S 3 , S 4 , S 5 } { S 1 , S 2 , S 7 } { S 5 , S 7 } { S 2 , S 3 } { S 3 , S 4 , S 6 } { S 2 , S 3 , S 7 } { S 1 , S 2 , S 3 } { S 4 , S 6 , S 7 } { S 3 , S 4 , S 5 }
K P I 9 { S 4 , S 6 } { S 6 , S 8 } { S 6 , S 7 } { S 3 , S 4 } { S 1 , S 4 } { S 5 , S 7 } { S 1 , S 3 } { S 2 , S 4 } { S 5 , S 6 } { S 3 , S 5 , S 7 }
K P I 10 { S 6 , S 7 } { S 1 , S 6 , S 7 } { S 1 , S 6 , S 7 } { S 3 , S 7 } { S 1 , S 2 } { S 2 , S 4 , S 6 } { S 2 , S 5 , S 7 } { S 2 , S 4 , S 6 } { S 7 } { S 1 }
K P I 11 { S 4 , S 7 } { S 1 , S 3 } { S 1 , S 3 } { S 2 , S 4 , S 6 } { S 6 , S 7 } { S 2 , S 3 , S 4 } { S 4 , S 5 , S 7 } { S 2 , S 5 , S 6 } { S 4 , S 5 , S 7 } { S 6 , S 7 }
K P I 12 { S 6 , S 7 } { S 1 , S 4 , S 5 } { S 6 , S 7 } { S 1 , S 4 , S 5 } { S 6 , S 7 } { S 1 , S 4 , S 6 } { S 1 , S 2 , S 7 } { S 4 , S 5 , S 6 } { S 5 , S 7 } { S 2 , S 3 , S 5 }
K P I 13 { S 5 , S 7 } { S 5 , S 7 } { S 3 , S 4 , S 5 } { S 4 , S 5 , S 7 } { S 1 , S 3 , S 4 } { S 3 , S 4 , S 6 } { S 1 , S 2 , S 7 } { S 1 , S 5 } { S 4 , S 6 , S 7 } { S 4 , S 5 , S 6 }
K P I 14 { S 2 , S 3 } { S 5 , S 7 } { S 4 , S 5 , S 6 } { S 7 } { S 4 , S 5 , S 6 } { S 5 , S 6 , S 7 } { S 4 , S 5 , S 7 } { S 5 , S 6 } { S 5 , S 6 , S 7 } { S 1 , S 3 , S 4 }
K P I 15 { S 4 , S 5 , S 6 } { S 6 , S 7 } { S 1 , S 2 , S 5 } { S 1 , S 2 , S 5 } { S 1 , S 2 } { S 2 , S 4 } { S 1 , S 2 } { S 4 , S 6 } { S 1 , S 3 } { S 3 , S 4 , S 6 }
K P I 16 { S 1 , S 2 , S 5 } { S 2 , S 6 } { S 1 , S 6 } { S 6 , S 7 } { S 4 , S 6 } { S 4 , S 7 } { S 2 , S 3 } { S 7 } { S 1 } { S 1 , S 4 }
K P I 17 { S 3 , S 5 } { S 1 , S 2 } { S 5 , S 6 , S 7 } { S 5 , S 6 , S 7 } { S 1 , S 2 } { S 1 , S 4 } { S 6 , S 7 } { S 2 , S 3 , S 4 } { S 5 , S 7 } { S 2 , S 3 }
K P I 18 { S 3 , S 5 , S 6 } { S 2 , S 3 , S 5 } { S 4 , S 7 } { S 4 , S 6 , S 7 } { S 1 , S 2 } { S 7 } { S 3 , S 4 } { S 6 , S 7 } { S 1 } { S 1 , S 2 , S 7 }
K P I 19 { S 4 , S 7 } { S 1 , S 2 } { S 5 , S 7 } { S 2 , S 5 , S 7 } { S 1 , S 2 } { S 1 } { S 1 , S 2 } { S 5 , S 7 } { S 1 , S 3 , S 5 } { S 6 , S 7 }
Table 2. X 2 Matrix.
Table 2. X 2 Matrix.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
K P I 1 { S 2 , S 5 } { S 3 , S 4 } { S 2 , S 7 } { S 4 , S 5 } { S 2 , S 3 } { S 5 , S 6 } { S 1 , S 2 , S 3 } { S 1 } { S 1 , S 5 } { S 1 , S 2 , S 3 }
K P I 2 { S 1 , S 4 } { S 6 , S 7 } { S 2 , S 4 } { S 1 , S 3 , S 4 } { S 1 , S 2 } { S 1 , S 2 } { S 3 , S 4 } { S 2 , S 4 , S 5 } { S 7 } { S 5 , S 6 }
K P I 3 { S 1 , S 2 } { S 4 , S 5 } { S 4 , S 5 } { S 3 , S 6 } { S 1 , S 3 } { S 1 , S 4 } { S 1 } { S 2 , S 3 , S 5 } { S 2 , S 3 , S 4 } { S 2 , S 3 }
K P I 4 { S 2 , S 3 , S 4 } { S 2 , S 4 } { S 6 , S 7 } { S 7 } { S 5 , S 6 , S 7 } { S 1 , S 2 , S 4 } { S 1 , S 2 , S 7 } { S 1 , S 4 } { S 1 , S 7 } { S 6 , S 7 }
K P I 5 { S 4 , S 5 } { S 2 , S 3 } { S 1 } { S 2 , S 5 , S 7 } { S 1 , S 2 , S 5 } { S 7 } { S 1 , S 3 } { S 1 , S 2 , S 3 } { S 5 , S 6 } { S 2 , S 3 }
K P I 6 { S 2 , S 4 } { S 1 , S 3 } { S 7 } { S 4 , S 6 } { S 2 , S 4 , S 5 } { S 1 , S 6 } { S 7 } { S 5 , S 7 } { S 7 } { S 2 , S 4 , S 6 }
K P I 7 { S 3 , S 4 } { S 4 , S 7 } { S 5 , S 6 } { S 3 , S 5 , S 6 } { S 4 , S 5 } { S 4 , S 5 , S 7 } { S 7 } { S 3 , S 4 } { S 1 , S 2 , S 3 } { S 2 , S 3 }
K P I 8 { S 1 , S 2 } { S 5 } { S 4 , S 7 } { S 6 , S 7 } { S 7 } { S 1 , S 2 } { S 1 } { S 6 , S 7 } { S 1 , S 4 } { S 1 , S 2 , S 3 }
K P I 9 { S 7 } { S 1 , S 2 , S 5 } { S 5 , S 6 } { S 5 , S 6 , S 7 } { S 5 , S 6 , S 7 } { S 2 , S 3 } { S 4 , S 7 } { S 2 , S 3 , S 7 } { S 1 , S 3 } { S 1 , S 3 }
K P I 10 { S 3 , S 4 } { S 7 } { S 3 , S 4 , S 5 } { S 1 , S 2 } { S 5 , S 6 , S 7 } { S 6 , S 7 } { S 2 , S 4 , S 5 } { S 6 , S 7 } { S 2 , S 3 , S 7 } { S 5 , S 7 }
K P I 11 { S 1 , S 2 , S 3 } { S 2 , S 4 , S 6 } { S 4 , S 6 } { S 7 } { S 1 , S 4 , S 6 } { S 5 , S 6 } { S 2 , S 3 , S 7 } { S 7 } { S 5 , S 6 , S 7 } { S 2 , S 4 , S 5 }
K P I 12 { S 2 , S 3 } { S 5 , S 6 } { S 1 , S 5 } { S 6 , S 7 } { S 1 , S 2 , S 5 } { S 7 } { S 1 } { S 7 } { S 1 , S 2 , S 3 } { S 1 }
K P I 13 { S 1 , S 3 } { S 4 , S 5 } { S 3 , S 4 } { S 1 , S 2 } { S 5 , S 6 , S 7 } { S 1 , S 3 } { S 6 , S 7 } { S 1 , S 3 } { S 1 } { S 7 }
K P I 14 { S 4 , S 5 } { S 2 , S 3 } { S 2 , S 3 } { S 2 , S 3 } { S 1 , S 2 , S 3 } { S 1 , S 2 } { S 4 , S 5 , S 6 } { S 1 , S 3 } { S 1 , S 2 , S 5 } { S 5 , S 6 }
K P I 15 { S 4 , S 5 } { S 7 } { S 7 } { S 5 , S 7 } { S 1 , S 2 , S 7 } { S 1 , S 2 } { S 2 , S 3 } { S 7 } { S 5 , S 7 } { S 1 , S 2 }
K P I 16 { S 7 } { S 6 , S 7 } { S 6 , S 7 } { S 1 , S 3 , S 4 } { S 1 , S 2 , S 4 } { S 1 , S 2 } { S 1 } { S 1 , S 3 } { S 6 , S 7 } { S 4 , S 7 }
K P I 17 { S 7 } { S 1 , S 2 } { S 1 , S 2 } { S 1 , S 6 } { S 2 , S 3 , S 6 } { S 5 , S 6 , S 7 } { S 1 , S 5 } { S 4 , S 5 } { S 1 , S 4 , S 5 } { S 4 , S 5 }
K P I 18 { S 1 , S 2 } { S 1 , S 3 , S 4 } { S 1 , S 3 , S 4 } { S 3 , S 4 } { S 3 , S 4 , S 7 } { S 1 , S 3 } { S 4 , S 5 , S 7 } { S 1 , S 2 , S 3 } { S 2 , S 3 , S 5 } { S 1 }
K P I 19 { S 1 , S 2 } { S 2 , S 5 } { S 2 , S 5 } { S 1 } { S 5 , S 6 , S 7 } { S 2 , S 4 , S 6 } { S 3 , S 6 } { S 2 , S 3 , S 4 } { S 2 , S 3 } { S 1 , S 2 , S 4 }
Table 3. X l aggregated matrix.
Table 3. X l aggregated matrix.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
K P I 1 { S 2 , S 7 } { S 4 , S 4 } { S 1 , S 7 } { S 4 , S 5 } { S 3 , S 4 } { S 3 , S 5 } { S 3 , S 4 } { S 1 , S 6 } { S 5 , S 7 } { S 3 , S 3 }
K P I 2 { S 1 , S 5 } { S 3 , S 5 } { S 2 , S 6 } { S 4 , S 4 } { S 2 , S 2 } { S 2 , S 2 } { S 2 , S 3 } { S 5 , S 5 } { S 6 , S 7 } { S 4 , S 5 }
K P I 3 { S 1 , S 6 } { S 4 , S 4 } { S 4 , S 7 } { S 3 , S 3 } { S 3 , S 5 } { S 4 , S 4 } { S 1 , S 4 } { S 5 , S 7 } { S 4 , S 6 } { S 1 , S 2 }
K P I 4 { S 2 , S 7 } { S 4 , S 5 } { S 1 , S 7 } { S 4 , S 7 } { S 3 , S 5 } { S 4 , S 5 } { S 4 , S 7 } { S 4 , S 4 } { S 6 , S 7 } { S 4 , S 6 }
K P I 5 { S 1 , S 5 } { S 3 , S 5 } { S 1 , S 6 } { S 2 , S 2 } { S 4 , S 5 } { S 6 , S 7 } { S 3 , S 5 } { S 3 , S 4 } { S 3 , S 5 } { S 3 , S 5 }
K P I 6 { S 2 , S 6 } { S 3 , S 4 } { S 1 , S 7 } { S 3 , S 4 } { S 5 , S 6 } { S 2 , S 3 } { S 7 , S 7 } { S 6 , S 7 } { S 5 , S 7 } { S 6 , S 6 }
K P I 7 { S 1 , S 4 } { S 2 , S 4 } { S 2 , S 6 } { S 2 , S 3 } { S 4 , S 4 } { S 4 , S 4 } { S 6 , S 7 } { S 4 , S 5 } { S 3 , S 4 } { S 3 , S 6 }
K P I 8 { S 1 , S 7 } { S 5 , S 5 } { S 1 , S 7 } { S 6 , S 7 } { S 3 , S 7 } { S 2 , S 3 } { S 1 , S 2 } { S 3 , S 6 } { S 4 , S 4 } { S 3 , S 3 }
K P I 9 { S 4 , S 7 } { S 5 , S 6 } { S 5 , S 7 } { S 4 , S 5 } { S 4 , S 5 } { S 3 , S 5 } { S 3 , S 4 } { S 2 , S 4 } { S 3 , S 5 } { S 3 , S 3 }
K P I 10 { S 3 , S 7 } { S 7 , S 7 } { S 1 , S 7 } { S 2 , S 3 } { S 2 , S 5 } { S 6 , S 6 } { S 2 , S 5 } { S 6 , S 6 } { S 7 , S 7 } { S 1 , S 5 }
K P I 11 { S 1 , S 7 } { S 2 , S 3 } { S 1 , S 6 } { S 6 , S 7 } { S 6 , S 6 } { S 4 , S 5 } { S 4 , S 7 } { S 6 , S 7 } { S 5 , S 7 } { S 5 , S 6 }
K P I 12 { S 2 , S 7 } { S 5 , S 5 } { S 1 , S 7 } { S 5 , S 6 } { S 5 , S 6 } { S 6 , S 7 } { S 1 , S 1 } { S 6 , S 7 } { S 3 , S 5 } { S 1 , S 2 }
K P I 13 { S 1 , S 7 } { S 5 , S 5 } { S 3 , S 5 } { S 2 , S 4 } { S 4 , S 5 } { S 3 , S 3 } { S 6 , S 7 } { S 1 , S 3 } { S 1 , S 4 } { S 6 , S 7 }
K P I 14 { S 2 , S 5 } { S 3 , S 5 } { S 2 , S 6 } { S 3 , S 7 } { S 3 , S 4 } { S 2 , S 5 } { S 4 , S 6 } { S 3 , S 5 } { S 5 , S 5 } { S 4 , S 5 }
K P I 15 { S 4 , S 6 } { S 7 , S 7 } { S 1 , S 7 } { S 5 , S 5 } { S 1 , S 2 } { S 2 , S 2 } { S 2 , S 2 } { S 6 , S 7 } { S 3 , S 5 } { S 2 , S 3 }
K P I 16 { S 1 , S 7 } { S 6 , S 6 } { S 1 , S 7 } { S 4 , S 6 } { S 4 , S 4 } { S 2 , S 4 } { S 1 , S 2 } { S 3 , S 7 } { S 1 , S 6 } { S 4 , S 4 }
K P I 17 { S 3 , S 7 } { S 1 , S 2 } { S 1 , S 7 } { S 5 , S 6 } { S 2 , S 2 } { S 4 , S 5 } { S 5 , S 6 } { S 4 , S 4 } { S 1 , S 5 } { S 3 , S 4 }
K P I 18 { S 1 , S 6 } { S 2 , S 4 } { S 1 , S 7 } { S 4 , S 4 } { S 2 , S 3 } { S 3 , S 7 } { S 4 , S 4 } { S 3 , S 6 } { S 1 , S 2 } { S 1 , S 1 }
K P I 19 { S 1 , S 7 } { S 2 , S 2 } { S 2 , S 7 } { S 1 , S 2 } { S 2 , S 5 } { S 1 , S 2 } { S 2 , S 3 } { S 4 , S 5 } { S 2 , S 3 } { S 4 , S 6 }
minmaxminmaxmaxmaxmaxmaxmaxmax
Table 4. AHP matrix.
Table 4. AHP matrix.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
C 1 1124645998
C 2 1135743586
C 3 1/21/313566435
C 4 1/41/51/31242577
C 5 1/61/71/51/2112322
C 6 1/41/41/61/4113547
C 7 1/51/31/61/21/21/31456
C 8 1/91/51/41/51/31/51/4112
C 9 1/91/81/31/71/41/41/5111
C 10 1/81/61/51/71/21/71/61/211
Table 5. D matrix. Distance between the logarithms of aggregate matrix X l and the vector A.
Table 5. D matrix. Distance between the logarithms of aggregate matrix X l and the vector A.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
K P I 1 0.693 + 1.2530.56 + 0.560 + 1.2530.56 + 0.3360.847 + 0.560.847 + 0.3360.847 + 0.561.946 + 0.1540.336 + 00.847 + 0.847
K P I 2 0 + 0.9160.847 + 0.3360.693 + 1.0990.56 + 0.561.253 + 1.2531.253 + 1.2531.253 + 0.8470.336 + 0.3360.154 + 00.056 + 0.336
K P I 3 0 + 1.0990.56 + 0.561.386 + 1.2560.847 + 0.8470.847 + 0.3360.56 + 0.561.943 + 0.560.336 + 00.56 + 0.1541.946 + 1.253
K P I 4 0.693 + 1.2530.56 + 0.3360 + 1.2530.56 + 00.847 + 0.3360.56 + 0.3360.56 + 00.56 + 0.560.154 + 00.56 + 0.154
K P I 5 0 + 0.9160.847 + 0.3360 + 1.0991.253 + 1.2530.56 + 0.3360.154 + 00.847 + 0.3360.847 + 0.560.847 + 0.3360.847 + 0.336
K P I 6 0.693 + 1.0990.847 + 0.560 + 1.2530.847 + 0.560.336 + 0.1541.253 + 0.8470 + 00.154 + 00.336 + 00.154 + 0.154
K P I 7 0 + 0.6931.253 + 0.560.693 + 1.0991.253 + 0.8470.56 + 0.560.56 + 0.560.154 + 00.56 + 0.3360.847 + 0.560.847 + 0.154
K P I 8 0 + 1.2530.336 + 0.3360 + 1.2530.154 + 00.847 + 01.253 + 0.8471.946 + 1.2530.847 + 0.1540.56 + 0.560.847 + 0.847
K P I 9 1.386 + 1.2530.336 + 0.1541.609 + 1.2530.56 + 0.3360.56 + 0.3360.847 + 0.3360.847 + 0.561.253 + 0.560.847 + 0.3360.847 + 0.847
K P I 10 1.099 + 1.2530 + 00 + 1.2531.253 + 0.8471.253 + 0.3360.154 + 0.1541.253 + 0.3360.154 + 0.1540.336 + 01.946 + 0.336
K P I 11 0 + 1.2531.253 + 0.8470 + 1.0990.154 + 00.154 + 0.1540.56 + 0.3360.56 + 00.154 + 00.336 + 00.336 + 0.154
K P I 12 0.693 + 1.2530.336 + 0.3360 + 1.2530.336 + 0.1540.336 + 0.1540.154 + 01.946 + 1.9460.154 + 00.847 + 0.3361.946 + 1.253
K P I 13 0 + 1.2530.336 + 0.3361.099 + 0.9161.253 + 0.560.56 + 0.3360.847 + 0.8470.154 + 01.946 + 0.8471.946 + 0.560.154 + 0
K P I 14 0.693 + 0.9160.847 + 0.3360.693 + 1.0990.847 + 00.847 + 0.561.253 + 0.3360.56 + 0.1540.847 + 0.3360.336 + 0.3360.56 + 0.336
K P I 15 1.386 + 1.0990 + 00 + 1.2530.336 + 0.3361.946 + 1.2531.253 + 1.2531.253 + 1.2530.154 + 00.847 + 0.3361.253 + 0.847
K P I 16 0 + 1.2530.154 + 0.1540 + 1.2530.56 + 0.1540.56 + 0.561.253 + 0.561.946 + 1.2530.847 + 01.946 + 0.1540.56 + 0.56
K P I 17 1.099 + 1.2531.946 + 1.2530 + 1.2530.336 + 0.1541.253 + 1.2530.56 + 0.3360.336 + 0.1540.56 + 0.561.946 + 0.3360.847 + 0.56
K P I 18 0 + 1.0991.253 + 0.560 + 1.2530.56 + 0.561.253 + 0.8470.847 + 00.56 + 0.560.847 + 0.1541.946 + 1.2531.946 + 1.946
K P I 19 0 + 1.2531.253 + 1.2530.693 + 1.2531.946 + 1.2531.253 + 0.3361.946 + 1.2531.253 + 0.8470.56 + 03361.253 + 0.8470.56 + 0.154
Table 6. Sum of the values obtained in D matrix.
Table 6. Sum of the values obtained in D matrix.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
K P I 1 1.9461.1191.2530.8961.4071.1841.4072.1000.3361.695
K P I 2 0.9161.1841.7921.1192.5062.5062.1000.6730.1540.896
K P I 3 1.0991.1192.6391.6951.1841.1192.5060.3360.7143.199
K P I 4 1.9460.8961.2530.5601.1840.8960.5601.1190.1540.714
K P I 5 0.9161.1841.0992.5060.8960.1541.1841.4071.1841.184
K P I 6 1.7921.4071.2531.4070.4912.1000.0000.1540.3360.308
K P I 7 0.6931.8121.7922.1001.1191.1190.1540.8961.4071.001
K P I 8 1.2530.6731.2530.1540.8472.1003.1991.0011.1191.695
K P I 9 2.6390.4912.8620.8960.8961.1841.4071.8121.1841.695
K P I 10 2.3510.0001.2532.1001.5890.3081.5890.3080.3362.282
K P I 11 1.2532.1001.0990.1540.3080.8960.5600.1540.3360.491
K P I 12 1.9460.6731.2530.4910.4910.1543.8920.1541.1843.199
K P I 13 1.2530.6732.0151.8120.8961.6950.1542.7932.5060.154
K P I 14 1.6091.1841.7920.8471.4071.5890.7141.1840.6730.896
K P I 15 2.4850.0001.2530.6733.1992.5062.5060.1541.1842.100
K P I 16 1.2530.3081.2530.7141.1191.8123.1990.8472.1001.119
K P I 17 2.3513.1991.2530.4912.5060.8960.4911.1192.2821.407
K P I 18 1.0991.8121.2531.1192.1000.8471.1191.0013.1993.892
K P I 19 1.2532.5061.9463.1991.5893.1992.1000.8962.1000.714
W j 0.2370.2430.1740.1040.0490.0720.0560.0240.0220.019
Table 7. D w matrix. Product between the matrix obtained in step 6 and the vector W j .
Table 7. D w matrix. Product between the matrix obtained in step 6 and the vector W j .
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10
K P I 1 0.4610.2720.2180.0930.0690.0850.0790.050.0070.032
K P I 2 0.2170.2880.3120.1160.1230.180.1180.0160.0030.017
K P I 3 0.260.2720.4590.1760.0580.0810.140.0080.0160.061
K P I 4 0.4610.2180.2180.0580.0580.0650.0310.0270.0030.014
K P I 5 0.2170.2880.1910.2610.0440.0110.0660.0340.0260.022
K P I 6 0.4250.3420.2180.1460.0240.15100.0040.0070.006
K P I 7 0.1640.440.3120.2180.0550.0810.0090.0220.0310.019
K P I 8 0.2970.1640.2180.0160.0420.1510.1790.0240.0250.032
K P I 9 0.6250.1190.4980.0930.0440.0850.0790.0430.0260.032
K P I 10 0.55700.2180.2180.0780.0220.0890.0070.0070.043
K P I 11 0.2970.510.1910.0160.0150.0650.0310.0040.0070.009
K P I 12 0.4610.1640.2180.0510.0240.0110.2180.0040.0260.061
K P I 13 0.2970.1640.3510.1880.0440.1220.0090.0670.0550.003
K P I 14 0.3810.2880.3120.0880.0690.1140.040.0280.0150.017
K P I 15 0.58900.2180.070.1570.180.140.0040.0260.04
K P I 16 0.2970.0750.2180.0740.0550.130.1790.020.0460.021
K P I 17 0.5570.7770.2180.0510.1230.0650.0270.0270.050.027
K P I 18 0.260.440.2180.1160.1030.0610.0630.0240.070.074
K P I 19 0.2970.6090.3390.3330.0780.230.1180.0220.0460.014
Table 8. Final ranking.
Table 8. Final ranking.
KPI i IS i Ranking
K P I 1 1.42E-116
K P I 2 5.51E-129
K P I 3 2.90E-115
K P I 4 1.85E-1315
K P I 5 1.99E-1212
K P I 6 0.00E+0017
K P I 7 2.38E-1211
K P I 8 3.64E-1210
K P I 9 3.72E-114
K P I 10 0.00E+0017
K P I 11 3.62E-1516
K P I 12 2.86E-1314
K P I 13 1.61E-1213
K P I 14 6.81E-128
K P I 15 0.00E+0017
K P I 16 9.22E-127
K P I 17 3.78E-113
K P I 18 1.43E-102
K P I 19 5.79E-101
Table 9. Overall statistics between rankings.
Table 9. Overall statistics between rankings.
VariableTotal CountAverageSD
DA199.8425.388
TOPSIS1910.0005.627
Total1919.8426.619
Table 10. Comparison between the ranking obtained by using the proposed method and the ranking obtained by [12].
Table 10. Comparison between the ranking obtained by using the proposed method and the ranking obtained by [12].
KPI i DA RankingTOPSIS Ranking
K P I 1 614
K P I 2 94
K P I 3 59
K P I 4 1510
K P I 5 123
K P I 6 178
K P I 7 1111
K P I 8 105
K P I 9 416
K P I 10 176
K P I 11 161
K P I 12 1412
K P I 13 1313
K P I 14 82
K P I 15 1719
K P I 16 718
K P I 17 315
K P I 18 27
K P I 19 117
Table 11. Covariance matrix.
Table 11. Covariance matrix.
DATOPSIS
DA29.029
TOPSIS−8.44431.667
Table 12. Sensibility analysis (A).
Table 12. Sensibility analysis (A).
IT 0 IT 1 IT 2 IT 3 IT 4 IT 5 IT 6 IT 7
K P I 1 1.42E-116.81E-112.25E-104.18E-104.81E-102.88E-105.87E-102.49E-10
K P I 2 5.51E-122.65E-118.75E-111.63E-101.87E-101.12E-102.28E-109.68E-11
K P I 3 2.90E-111.39E-104.60E-108.55E-109.84E-105.88E-101.20E-095.09E-10
K P I 4 1.85E-138.87E-132.93E-125.45E-126.27E-123.75E-127.65E-123.25E-12
K P I 5 1.99E-129.56E-123.16E-115.87E-116.75E-114.03E-118.24E-113.50E-11
K P I 6 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
K P I 7 2.38E-121.14E-113.78E-117.03E-118.09E-114.83E-119.87E-114.19E-11
K P I 8 3.64E-121.75E-115.78E-111.07E-101.24E-107.38E-111.51E-106.39E-11
K P I 9 3.72E-111.79E-105.91E-101.10E-091.26E-097.55E-101.54E-096.55E-10
K P I 10 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
K P I 11 3.62E-151.74E-145.75E-141.07E-131.23E-137.35E-141.50E-136.37E-14
K P I 12 2.86E-131.37E-124.54E-128.43E-129.70E-125.80E-121.18E-115.02E-12
K P I 13 1.61E-127.72E-122.55E-114.74E-115.46E-113.26E-116.66E-112.82E-11
K P I 14 6.81E-123.27E-111.08E-102.01E-102.31E-101.38E-102.82E-101.20E-10
K P I 15 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
K P I 16 9.22E-124.43E-111.46E-102.72E-103.13E-101.87E-103.82E-101.62E-10
K P I 17 3.78E-111.82E-106.01E-101.12E-091.28E-097.67E-101.57E-096.65E-10
K P I 18 1.43E-106.88E-102.27E-094.23E-094.86E-092.91E-095.93E-092.52E-09
K P I 19 5.79E-102.78E-099.19E-091.71E-081.97E-081.17E-082.40E-081.02E-08
Table 13. Sensibility analysis (B).
Table 13. Sensibility analysis (B).
IT 8 IT 9 IT 10 IT 11 IT 12 IT 13 IT 14 IT 15
K P I 1 9.98E-112.55E-102.57E-104.24E-102.93E-103.16E-102.64E-102.99E-10
K P I 2 3.88E-119.91E-119.99E-111.65E-101.14E-101.23E-101.03E-101.16E-10
K P I 3 2.04E-105.21E-105.26E-108.66E-105.99E-106.45E-105.41E-106.11E-10
K P I 4 1.30E-123.32E-123.35E-125.52E-123.81E-124.11E-123.44E-123.90E-12
K P I 5 1.40E-113.58E-113.61E-115.95E-114.11E-114.43E-113.71E-114.20E-11
K P I 6 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
K P I 7 1.68E-114.28E-114.32E-117.12E-114.92E-115.30E-114.44E-115.02E-11
K P I 8 2.56E-116.54E-116.60E-111.09E-107.51E-118.10E-116.78E-117.67E-11
K P I 9 2.62E-106.70E-106.75E-101.11E-097.69E-108.29E-106.95E-107.85E-10
K P I 10 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
K P I 11 2.55E-146.51E-146.57E-141.08E-137.48E-148.06E-146.76E-147.64E-14
K P I 12 2.01E-125.14E-125.18E-128.54E-125.90E-126.36E-125.33E-126.03E-12
K P I 13 1.13E-112.89E-112.91E-114.80E-113.32E-113.58E-113.00E-113.39E-11
K P I 14 4.80E-111.22E-101.23E-102.04E-101.41E-101.52E-101.27E-101.44E-10
K P I 15 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
K P I 16 6.50E-111.66E-101.67E-102.76E-101.91E-102.05E-101.72E-101.95E-10
K P I 17 2.66E-106.80E-106.86E-101.13E-097.81E-108.42E-107.05E-107.98E-10
K P I 18 1.01E-092.58E-092.60E-094.28E-092.96E-093.19E-092.67E-093.02E-09
K P I 19 4.08E-091.04E-081.05E-081.73E-081.20E-081.29E-081.08E-081.22E-08
Table 14. Variance analysis.
Table 14. Variance analysis.
SourceGLSC Ajust.MC Ajust.F-Valuep-Value
Factor150.0000000.0000000.490.945
Error2880.0000000.000000
Total3030.000000
Table 15. Tukey’s pairwise comparison.
Table 15. Tukey’s pairwise comparison.
FactorNAverageAgrupation
I T 6 190.000000A
I T 4 190.000000A
I T 11 190.000000A
I T 3 190.000000A
I T 13 190.000000A
I T 15 190.000000A
I T 12 190.000000A
I T 5 190.000000A
I T 14 190.000000A
I T 10 190.000000A
I T 9 190.000000A
I T 7 190.000000A
I T 2 190.000000A
I T 8 190.000000A
I T 1 190.000000A
I T 0 190.000000A
Table 16. Fisher’s pairwise comparison.
Table 16. Fisher’s pairwise comparison.
FactorNAverageAgrupation
I T 6 190.000000A
I T 4 190.000000A
I T 11 190.000000A
I T 3 190.000000A
I T 13 190.000000A
I T 15 190.000000A
I T 12 190.000000A
I T 5 190.000000A
I T 14 190.000000A
I T 10 190.000000A
I T 9 190.000000A
I T 7 190.000000A
I T 2 190.000000A
I T 8 190.000000A
I T 1 190.000000A
I T 0 190.000000A
Table 17. Dunnett’s multiple comparisons with a control.
Table 17. Dunnett’s multiple comparisons with a control.
FactorNAverageAgrupation
I T 0 (control)190.000000A
I T 6 190.000000A
I T 4 190.000000A
I T 11 190.000000A
I T 3 190.000000A
I T 13 190.000000A
I T 15 190.000000A
I T 12 190.000000A
I T 5 190.000000A
I T 14 190.000000A
I T 10 190.000000A
I T 9 190.000000A
I T 7 190.000000A
I T 2 190.000000A
I T 8 190.000000A
I T 1 190.000000A
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chitiva-Enciso, W.A.; Pérez-Domínguez, L.A.; Romero-López, R.; Luviano-Cruz, D.; Pérez-Olguín, I.J.C.; Méndez-González, L.C. Lean Manufacturing Assessment: Dimensional Analysis with Hesitant Fuzzy Linguistic Term Sets. Appl. Sci. 2024, 14, 1475. https://doi.org/10.3390/app14041475

AMA Style

Chitiva-Enciso WA, Pérez-Domínguez LA, Romero-López R, Luviano-Cruz D, Pérez-Olguín IJC, Méndez-González LC. Lean Manufacturing Assessment: Dimensional Analysis with Hesitant Fuzzy Linguistic Term Sets. Applied Sciences. 2024; 14(4):1475. https://doi.org/10.3390/app14041475

Chicago/Turabian Style

Chitiva-Enciso, William Alexander, Luis Asunción Pérez-Domínguez, Roberto Romero-López, David Luviano-Cruz, Iván Juan Carlos Pérez-Olguín, and Luis Carlos Méndez-González. 2024. "Lean Manufacturing Assessment: Dimensional Analysis with Hesitant Fuzzy Linguistic Term Sets" Applied Sciences 14, no. 4: 1475. https://doi.org/10.3390/app14041475

APA Style

Chitiva-Enciso, W. A., Pérez-Domínguez, L. A., Romero-López, R., Luviano-Cruz, D., Pérez-Olguín, I. J. C., & Méndez-González, L. C. (2024). Lean Manufacturing Assessment: Dimensional Analysis with Hesitant Fuzzy Linguistic Term Sets. Applied Sciences, 14(4), 1475. https://doi.org/10.3390/app14041475

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop