Impact of Incorporating Two Types of Dried Raspberry Pomace into Gluten-Free Bread on Its Nutritional and Antioxidant Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Dough and Bread Baking Procedure
2.3. Determination of Physical Properties of Bread
2.3.1. Determination of Bread Moisture
2.3.2. Determination of Total Baking Loss
2.3.3. Determination of Titratable Acidity (TTA)
2.4. Determination of Nutritional Properties of Bread
2.4.1. Determination of Dietary Fiber Content
2.4.2. Protein Content Analysis
2.4.3. Determination of Fat Content
2.4.4. Ash Content Analysis
2.4.5. Determining the Carbohydrate Content
2.4.6. Calculation of Energy Value
2.5. Determination of Antioxidant Properties of Bread
2.5.1. Preparation of Extracts for Chemical Analysis
2.5.2. Total Phenolic Content (TPC) Assay
2.5.3. Antioxidant Activity—ABTS and DPPH Assays
2.5.4. Total Anthocyanin Content (TAC) Assay
2.6. Statistical Analyses
3. Results and Discussion
3.1. Physical Properties of Bread
3.2. Nutritional Properties of Bread and Pomace
3.3. Antioxidant Properties of Bread and Pomace
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and vegetable by-products’ flours as ingredients: A review on production process, health benefits and technological functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ayala-Zavala, J.F.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Agro-Industrial Fruit Byproducts as Health-Promoting Ingredients Used to Supplement Baked Food Products. Foods 2022, 11, 3181. [Google Scholar] [CrossRef] [PubMed]
- Castillejo, N.; Martínez-Hernández, G.B.; Artés-Hernández, F. Revalorized broccoli by-products and mustard improved quality during shelf life of a kale pesto sauce. Food Sci. Technol. Int. 2021, 27, 734–745. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Castillejo, N.; Artés-Hernández, F. Effect of fresh–cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biol. Tec. 2019, 156, 110925. [Google Scholar] [CrossRef]
- Tarazona-Díaz, M.P.; Viegas, J.; Moldao-Martins, M.; Aguayo, E. Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars: Bioactive compounds from fresh-cut watermelon cultivars. J. Sci. Food Agric. 2010, 91, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; López-Cañavate, M.E.; Guirao-Martínez, J.; Roca, M.J.; Aguayo, E. Aloe vera Flowers, a Byproduct with Great Potential and Wide Application, Depending on Maturity Stage. Foods 2020, 9, 1542. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.; Siddiqui, M.W.; Dávila-Aviña, J.; González-Aguilar, G. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Bedoic, R.; Cosic, B.; Duic, N. Technical potential and geographic distribution of agricultural residues, co-products and by-products in the European Union. Sci. Total Environ. 2019, 686, 568–579. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stepniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Reshmi, S.; Sudha, M.; Shashirekha, M. Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments. Food Chem. 2017, 237, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Ispiryan, A.; Viškelis, J.; Viškelis, P.; Urbonavičiene, D.; Raudone, L. Biochemical and Antioxidant Profiling of Raspberry Plant Parts for Sustainable Processing. Plants 2023, 12, 2424. [Google Scholar] [CrossRef] [PubMed]
- Blicharz-Kania, A.; Vasiukov, K.; Sagan, A.; Andrejko, D.; Fifowska, W.; Domin, M. Nutritional Value, Physical Properties, and Sensory Quality of Sugar-Free Cereal Bars Fortified with Grape and Apple Pomace. Appl. Sci. 2023, 13, 10531. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipin’ska, E.; Hac-Szyman´czuk, E.; Kolotylo, V.; Kieliszek, M. Use of apple pomace, glycerine, and potato wastewater for the production of propionic acid and vitamin B12. Appl. Microbiol. Biotechnol. 2022, 106, 5433–5448. [Google Scholar] [CrossRef]
- Ciurzyn´ska, A.; Popkowicz, P.; Galus, S.; Janowicz, M. Innovative Freeze-Dried Snacks with Sodium Alginate and Fruit Pomace (Only Apple or Only Chokeberry) Obtained within the Framework of Sustainable Production. Molecules 2022, 27, 3095. [Google Scholar] [CrossRef]
- Angulo-López, J.E.; Flores-Gallegos, A.C.; Ascacio-Valdes, J.A.; Contreras Esquivel, J.C.; Torres-León, C.; Rúelas-Chácon, X.; Aguilar, C.N. Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2022, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sampers, I.; Raes, K. Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocolloid. 2021, 111, 106175. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. 2017, 58, 2119–2135. [Google Scholar] [CrossRef]
- Jiang, H.; Hettiararchchy, N.S.; Horax, R. Quality and estimated glycemic profile of baked protein-enriched corn chips. J. Food Sci. Technol. 2019, 56, 2855–2862. [Google Scholar] [CrossRef]
- Alp, D.; Bulantekin, O. The microbiological quality of various foods dried by applying different drying methods: A review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef]
- Zubia, C.S.; Babaran, G.M.O.; Duque, S.M.M.; Mopera, L.E.; Flandez, L.E.L.; Castillo-Israel, K.A.T.; Reginio, F.C. Impact of drying on the bioactive compounds and antioxidant properties of bignay [Antidesma bunius (L.) Spreng.] pomace. Food Prod. Process. Nutr. 2023, 5, 11. [Google Scholar] [CrossRef]
- Çoklar, H.; Akbulut, M. Effect of Sun, Oven and Freeze-Drying on Anthocyanins, Phenolic Compounds and Antioxidant Activity of Black Grape (Eksikara) (Vitis vinifera L.). S. Afr. J. Enol. Vitic. 2017, 38, 264–272. [Google Scholar] [CrossRef]
- Betoret, E.; Rosell, C.M. Enrichment of bread with fruits and vegetables: Trends and strategies to increase functionality. Cereal Chem. 2019, 97, 9–19. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L.; Qian, H.; Zhang, H.; Qi, X. Contribution of spontaneously-fermented sourdoughs with pear and navel orange for the bread-making. LWT 2018, 89, 336–343. [Google Scholar] [CrossRef]
- Dhen, N.; Ben Rejeb, I.; Boukhris, H.; Damergi, C.; Gargouri, M. Physicochemical and sensory properties of wheat- Apricot kernels composite bread. LWT 2018, 95, 262–267. [Google Scholar] [CrossRef]
- Coe, S.; Ryan, L. White bread enriched with polyphenol extracts shows no effect on glycemic response or satiety, yet may increase postprandial insulin economy in healthy participants. Nutr. Res. 2016, 36, 193–200. [Google Scholar] [CrossRef]
- Eshak, N.S. Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber. Ann. Agric. Sci. 2016, 61, 229–235. [Google Scholar] [CrossRef]
- Ho, L.H.; Tan, T.C.; Abdul Aziz, N.A.; Bhat, R. In vitro starch digestibility of bread with banana (Musa acuminata X balbisiana ABB cv. Awak) pseudo-stem flour and hydrocolloids. Food Biosci. 2015, 12, 10–17. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, E.; Sikora, M.; Kapusta-Duch, J.; Kutyła-Kupidura, E.M.; Fołta, M. Nutritional properties of wholemeal wheat-flour bread with an addition of selected wild grown fruits. Starch -Stärke 2016, 68, 675–682. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Cifuentes-Gomez, T.; George, T.W.; Spencer, J.P.E. Impact of Cooking, Proving, and Baking on the (Poly)phenol Content of Wild Blueberry. J. Agric. Food Chem. 2013, 62, 3979–3986. [Google Scholar] [CrossRef]
- Ezhilarasi, P.; Indrani, D.; Jena, B.; Anandharamakrishnan, C. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. J. Food Eng. 2013, 117, 513–520. [Google Scholar] [CrossRef]
- Sivam, A.; Sun-Waterhouse, D.; Perera, C.; Waterhouse, G. Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 2012, 131, 802–810. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Sivam, A.; Cooney, J.; Zhou, J.; Perera, C.; Waterhouse, G. Effects of added fruit polyphenols and pectin on the properties of finished breads revealed by HPLC/LC-MS and Size-Exclusion HPLC. Food Res. Int. 2011, 44, 3047–3056. [Google Scholar] [CrossRef]
- Kruczek, M.; Gumul, D.; Korus, A.; Buksa, K.; Ziobro, R. Phenolic Compounds and Antioxidant Status of Cookies Supplemented with Apple Pomace. Antioxidants 2023, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Peñalver, R.; Ros, G.; Nieto, G. Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients. Fermentation 2023, 9, 631. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Nunes, M.C.; Gouvinhas, I.; Ferreira, L.M.M.; Peres, J.A.; Barros, A.I.R.N.A.; Raymundo, A. Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods 2022, 11, 3172. [Google Scholar] [CrossRef]
- Djordjevic, M.; Šoronja Simovic, D.; Nikolic, I.; Djordjevic, M.; Šereš, Z.; Milašinovic-Šeremešic, M. Sugar beet and apple fibres coupled with hydroxypropylmethylcellulose as functional ingredients in gluten-free formulations: Rheological, technological and sensory aspects. Food Chem. 2019, 295, 189–197. [Google Scholar] [CrossRef]
- O’Shea, N.; Rößle, C.; Arendt, E.; Gallagher, E. Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chem. 2015, 166, 223–230. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Cantero, L.; Salmerón, J.; Miranda, J.; Larretxi, I.; Fernández-Gil, M.d.P.; Bustamante, M.; Matias, S.; Navarro, V.; Simón, E.; Martínez, O. Performance of Apple Pomace for Gluten-Free Bread Manufacture: Effect on Physicochemical Characteristics and Nutritional Value. Appl. Sci. 2022, 12, 5934. [Google Scholar] [CrossRef]
- Djeghim, F.; Bourekoua, H.; Rózyło, R.; Bien´czak, A.; Tanas, W.; Zidoune, M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021, 11, 4605. [Google Scholar] [CrossRef]
- Korus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; Sójka MichałKorus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; et al. Defatted strawberry and blackcurrant seeds as functional ingredients of gluten-free bread. J. Texture Stud. 2011, 43, 29–39. [Google Scholar] [CrossRef]
- Molnar, D.; Velickova, E.; Prost, C.; Temkov, M.; Ščetar, M.; Novotni, D. Consumer Nutritional Awareness, Sustainability Knowledge, and Purchase Intention of Environmentally Friendly Cookies in Croatia, France, and North Macedonia. Foods 2023, 12, 3932. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, D.C.; Vermeir, I.; Petres-cu-Mag, R.M. Consumer Understanding of Food Quality, Healthiness, and Environmental-mental Impact: A Cross-National Perspective. Int. J. Environ. Res. Public Health 2020, 17, 169. [Google Scholar] [CrossRef] [PubMed]
- Grochowicz, J.; Fabisiak, A.; Ekielski, A. Importance of physical and functional properties of foods targeted to seniors. J. Future Foods 2021, 2, 146–155. [Google Scholar] [CrossRef]
- Salihu, S.; Gashi, N.; Hasani, E. Effect of Plant Extracts Addition on the Physico-Chemical and Sensory Properties of Biscuits. Appl. Sci. 2023, 13, 9674. [Google Scholar] [CrossRef]
- Rousta, L.K.; Bodbodak, S.; Nejatian, M.; Yazdi, A.P.G.; Rafiee, Z.; Xiao, J.; Jafari, S.M. Use of encapsulation technology to enrich and fortify bakery, paste, and cereal-based products. Trends Food Sci. Technol. 2021, 18, 688–710. [Google Scholar] [CrossRef]
- Jamanca-Gonzales, N.C.; Ocrospoma-Dueñas, R.W.; Quintana-Salazar, N.B.; Jimenez-Bustamante, J.N.; Huaman, E.E.H.; Silva-Paz, R.J. Physicochemical and Sen-sory Parameters of “Petipan” Enriched with Heme Iron and Andean Grain Flours. Molecules 2023, 28, 3073. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Pais, T.F.; Pinto, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Santos, C.N. Bioaccessible Raspberry Extracts Enriched in Ellagitannins and Ellagic Acid Derivatives Have Anti-Neuroinflammatory Properties. Antioxidants 2020, 9, 970. [Google Scholar] [CrossRef]
- Rao, A.V.; Snyder, D.M. Raspberries and Human Health: A Review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef]
- Sawicka, B.; Barbas´, P.; Skiba, D.; Krochmal-Marczak, B.; Pszczółkowski, P. Evaluation of the Quality of Raspberries (Rubus idaeus L.) Grown in Balanced Fertilization Conditions. Commodities 2023, 2, 220–245. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits—A Review. Foods 2022, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Szymanowska, U.; Karas, M.; Bochnak-Niedzwiecka, J. Antioxidant and Anti-Inflammatory Potential and Consumer Acceptance of Wafers Enriched with Freeze-Dried Raspberry Pomace. Appl. Sci. 2021, 11, 6807. [Google Scholar] [CrossRef]
- Żukiewicz, K.; Dudziak, A.; Słowik, T.; Mazur, J.; Łusiak, P. Analysis of the Problem of Waste in Relation to Food Consumers. Sustainability 2022, 14, 11126. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists; Numbert. 1-2 in Approved Methods of the American Association of Cereal Chemists, AACC; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Van Alfen, N. Encyclopedia of Agriculture and Food Systems; Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT 2020, 118, 108860. [Google Scholar] [CrossRef]
- Sandvik, P.; Marklinder, I.; Nydahl, M.; NÆs, T.; Kihlberg, I. Characterization of commercial rye bread based on sensory properties, fluidity index and chemical acidity. J. Sens. Stud. 2016, 31, 283–295. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional value and biological activity of gluten-free bread enriched with cricket powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 152–178. [Google Scholar] [CrossRef]
- Kobus, Z.; Krzywicka, M.; Pecyna, A.; Buczaj, A. Process Efficiency and Energy Consumption during the Ultrasound-Assisted Extraction of Bioactive Substances from Hawthorn Berries. Energies 2021, 14, 7638. [Google Scholar] [CrossRef]
- Krzywicka, M.; Kobus, Z. Effect of the Shape of Ultrasonic Vessels on the Chemical Properties of Extracts from the Fruit of Sorbus aucuparia. Appl. Sci. 2023, 13, 7805. [Google Scholar] [CrossRef]
- Gumul, D.; Korus, A.; Ziobro, R. Extruded Preparations with Sour Cherry Pomace Influence Quality and Increase the Level of Bioactive Components in Gluten-Free Breads. Int. J. Food Sci. 2020, 2020, 8024398. [Google Scholar] [CrossRef]
- Majzoobi, M.; Vosooghi Poor, Z.; Mesbahi, G.; Jamalian, J.; Farahnaky, A. Effects of carrot pomace powder and a mixture of pectin and xanthan on the quality of gluten-free batter and cakes. J. Texture Stud. 2017, 48, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shrivastava, A.; Sharma, S.; Gupta, R.; Kuhad, R.C. Microbial Pectinases and Their Applications. In Biotechnology for Environmental Management and Resource Recovery; Springer: New Delhi, India, 2013; pp. 107–124. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Yang, G.; Sun, L.; Song, X.; Chen, Q.; Bao, Y.; Luo, T.; Wang, J. Microstructure, physicochemical properties, and adsorption capacity of deoiled red raspberry pomace and its total dietary fiber. LWT 2022, 153, 112478. [Google Scholar] [CrossRef]
- Krivokapic, S.; Vlaovic, M.; Damjanovic Vratnica, B.; Perovic, A.; Perovic, S. Biowaste as a Potential Source of Bioactive Compounds—A Case Study of Raspberry Fruit Pomace. Foods 2021, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Q.; Lu, Q. Impact of apple pomace on the property of French bread. Adv. J. Food Sci. Technol. 2015, 8, 167–172. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Havrlentová, M.; Ivanišová, E.; Mezey, J.; Tóthová, Z.; Gabríny, L.; Kačániová, M. Selected Physico-Chemical, Nutritional, Antioxidant and Sensory Properties of Wheat Bread Supplemented with Apple Pomace Powder as a By-Product from Juice Production. Plants 2022, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.; Škrobot, D.; Hajnal, E.J.; Belović, M.; Zhang, N. Sensory and physico-chemical properties of wholegrain wheat bread prepared with selected food by-products. LWT 2019, 114, 108414. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Lebedeva, T.N.; Vidyagina, E.O.; Sorokopudov, V.N.; Popova, A.A.; Shestibratov, K.A. Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants 2022, 11, 1961. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Ledwozyw-Smolen´, I.; Augustynowicz, J.; Wyzgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chem. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Vulić, J.; Velicanski, A.; Cetojevic-Simin, D.; Tumbas-Saponjac, V.; Djilas, S.; Cvetkovic, D.; Markov, S. Antioxidant, antiproliferative and antimicrobial activity of freeze-dried raspberry. Acta Period. Technol. 2014, 45, 99–116. [Google Scholar] [CrossRef]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef]
- Xiao, T.; Guo, Z.; Bi, X.; Zhao, Y. Polyphenolic profile as well as anti-oxidant and anti-diabetes effects of extracts from freeze-dried black raspberries. J. Funct. Foods 2017, 31, 179–187. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Stamenkovic, Z.; Pavkov, I.; Radojčin, M.; Tepic Horecki, A.; Kešelj, K.; Bursac Kovačevic, D.; Putnik, P. Convective Drying of Fresh and Frozen Raspberries and Change of Their Physical and Nutritive Properties. Foods 2019, 8, 251. [Google Scholar] [CrossRef]
- Darniadi, S.; Ifie, I.; Ho, P.; Murray, B.S. Evaluation of total monomeric anthocyanin, total phenolic content and individual anthocyanins of foam-mat freeze-dried and spray-dried blueberry powder. J. Food Meas. Charact. 2019, 13, 1599–1606. [Google Scholar] [CrossRef]
- Izli, N.; Izli, G.; Taskin, O. Impact of different drying methods on the drying kinetics, color, total phenolic content and antioxidant capacity of pineapple. CyTA -J. Food 2018, 16, 213–221. [Google Scholar] [CrossRef]
- Shahidi, F. Food Phenolics: Sources, Chemistry, Effects, Applications; Technomic Pub., Co.: Lancaster, UK, 1995. [Google Scholar]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward Folin–Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Katina, K.; Laitila, A.; Juvonen, R.; Liukkonen, K.H.; Kariluoto, S.; Piironen, V.; Landberg, R.; Åman, P.; Poutanen, K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 2007, 24, 175–186. [Google Scholar] [CrossRef] [PubMed]
Probe Code | 0 | 5CD | 10CD | 5FD | 10FD |
---|---|---|---|---|---|
Ingredients | Amount of Ingredients | ||||
Rice flour | 250 g | 225 g | 200 g | 225 g | 200 g |
Corn flour | 200 g | 200 g | 200 g | 200 g | 200 g |
Potato starch | 50 g | 50 g | 50 g | 50 g | 50 g |
Water | 500 g | 500 g | 500 g | 500 g | 500 g |
Rapeseed oil | 30 g | 30 g | 30 g | 30 g | 30 g |
Dry yest | 8 g | 8 g | 8 g | 8 g | 8 g |
Salt | 12 g | 12 g | 12 g | 12 g | 12 g |
Sugar | 10 g | 10 g | 10 g | 10 g | 10 g |
Ground flax seeds | 15 g | 15 g | 15 g | 15 g | 15 g |
Convection-dried raspberry pomace | 0 g | 25 g | 50 g | 0 g | 0 g |
Freeze-dried raspberry pomace | 0 g | 0 g | 0 g | 25 g | 50 g |
Product | Probe | Crumb Moisture (g·100 g−1) | Total Baking Loss (gloss·100 g−1) | TTA (mL NaOH/10 g d. b.) |
---|---|---|---|---|
Bread | 0 | 51.1 ± 0.64 a | 15.1 ± 0.42 a | 2.13 ± 0.18 c |
5FD | 51.1 ± 0.25 a | 11.7 ± 0.35 b | 4.18 ± 0.11 b | |
10FD | 51.1 ± 0.35 a | 10.6 ± 0.57 b | 7.78 ± 0.11 a | |
5CD | 51.6 ± 0.13 a | 11.4 ± 0.21 b | 4.48 ± 0.18 b | |
10CD | 51.4 ± 0.24 a | 11.5 ± 0.57 b | 7.70 ± 0.14 a |
Product | Probe | IDF (%d. w.) | SDF (%d. w.) | TDF (%d. w.) |
---|---|---|---|---|
Bread | 0 | 16.2 ± 0.22 ab | 1.94 ± 0.03 d | 18.1 ± 0.25 b |
5FD | 15.9 ± 0.05 b | 2.53 ± 0.03 ab | 18.5 ± 0.09 ab | |
10FD | 17.2 ± 0.03 a | 2.73 ± 0.06 a | 20.0 ± 0.09 a | |
5CD | 15.6 ± 0.68 b | 2.18 ± 0.15 cd | 17.8 ± 0.83 b | |
10CD | 16.4 ± 0.05 ab | 2.33 ± 0.06 bc | 18.7 ± 0.09 ab | |
Pomace | FD | 40.2 ± 0.11 A | 6.17 ± 0.01 A | 46.4 ± 0.04 A |
CD | 39.3 ± 0.11 B | 5.60 ± 0.02 B | 44.9 ± 0.13 B |
Product | Probe | Protein (%d. w.) | Fat (%d. w.) | Ash (%d. w.) | C (%d. w.) | EV (kcal·100-1gf.w.) |
---|---|---|---|---|---|---|
Bread | 0 | 8.43 ± 0.01 a | 5.74 ± 0.06 b | 2.83 ± 0.04 a | 65.7 ± 0.15 a | 171 ± 0.59 a |
5FD | 8.40 ± 0.03 a | 7.05 ± 0.26 a | 2.98 ± 0.02 b | 63.7 ± 0.14 b | 173 ± 0.82 a | |
10FD | 8.51 ± 0.02 a | 7.18 ± 0.02 a | 3.12 ± 0.06 c | 63.9 ± 0.04 c | 171 ± 0.17 a | |
5CD | 8.44 ± 0.01 a | 6.81 ± 0.01 a | 2.95 ± 0.00 ab | 64.8 ± 0.83 ab | 173 ± 1.58 a | |
10CD | 8.48 ± 0.04 a | 6.92 ± 0.06 a | 3.02 ± 0.03 bc | 63.9 ± 0.16 b | 172 ± 0.01 a | |
Pomace | FD | 9.73 ± 0.02 A | 5.97 ± 0.05 A | 2.39 ± 0.02 A | 38.6 ± 0.11 A | 235 ± 0.69 A |
CD | 9.59 ± 0.08 A | 5.99 ± 0.00 A | 2.32 ± 0.02 B | 40.3 ± 0.02 B | 231 ± 0.15 B |
Product | Probe | TPC (mg GAE/ g d. m.) | ABTS (μg TE/g d. m.) | DPPH (μg TE/g d. m.) | TAC (mg Cy3-GE/g d. m.) |
---|---|---|---|---|---|
Bread | 0 | 1.37 ± 0.17 a | 5.61 ± 0.61 a | 1.96 ± 0.07 a | n.d. |
5FD | 1.82 ± 0.15 b | 9.13 ± 0.64 ab | 2.64 ± 0.08 b | n.d. | |
10FD | 2.49 ± 0.13 c | 14.6 ± 1.39 b | 3.85 ± 0.12 d | n.d. | |
5CD | 1.67 ± 0.13 ab | 9.37 ± 0.86 ab | 2.68 ± 0.06 b | n.d. | |
10CD | 2.07 ± 0.09 b | 9.14 ± 1.32 ab | 3.55 ± 0.04 c | n.d. | |
Pomace | FD | 13.7 ± 0.73 A | 116 ± 1.48 A | 90.2 ± 0.73 A | 0.73 + 0.03 A |
CD | 12.7 ± 0.67 A | 111 ± 3.04 B | 89.7 ± 3.18 A | 0.39 + 0.02 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecyna, A.; Krzywicka, M.; Blicharz-Kania, A.; Buczaj, A.; Kobus, Z.; Zdybel, B.; Domin, M.; Siłuch, D. Impact of Incorporating Two Types of Dried Raspberry Pomace into Gluten-Free Bread on Its Nutritional and Antioxidant Characteristics. Appl. Sci. 2024, 14, 1561. https://doi.org/10.3390/app14041561
Pecyna A, Krzywicka M, Blicharz-Kania A, Buczaj A, Kobus Z, Zdybel B, Domin M, Siłuch D. Impact of Incorporating Two Types of Dried Raspberry Pomace into Gluten-Free Bread on Its Nutritional and Antioxidant Characteristics. Applied Sciences. 2024; 14(4):1561. https://doi.org/10.3390/app14041561
Chicago/Turabian StylePecyna, Anna, Monika Krzywicka, Agata Blicharz-Kania, Agnieszka Buczaj, Zbigniew Kobus, Beata Zdybel, Marek Domin, and Dariusz Siłuch. 2024. "Impact of Incorporating Two Types of Dried Raspberry Pomace into Gluten-Free Bread on Its Nutritional and Antioxidant Characteristics" Applied Sciences 14, no. 4: 1561. https://doi.org/10.3390/app14041561
APA StylePecyna, A., Krzywicka, M., Blicharz-Kania, A., Buczaj, A., Kobus, Z., Zdybel, B., Domin, M., & Siłuch, D. (2024). Impact of Incorporating Two Types of Dried Raspberry Pomace into Gluten-Free Bread on Its Nutritional and Antioxidant Characteristics. Applied Sciences, 14(4), 1561. https://doi.org/10.3390/app14041561