Nitrogen-Related Defects in Crystalline Silicon
Abstract
:1. Introduction
2. Background Information of N-Related Defects in Si
2.1. Nitrogen Substitutional (Ns) and Interstitial (Ni) Defects
2.2. The Nitrogen Di-Interstitial (NiNi) Defect
2.3. The NsV Defect
2.4. The NiNs Defect
2.5. The NsNs Defect
2.6. The NiNiSiI Defect
2.7. The NsNsV Defect
2.8. The NO Defect
2.9. The NO2 Defect
2.10. The N2O Defect
2.11. The N2O2 Defect
2.12. The VmN2On (m, n =1, 2) Defect
2.13. The CN and CNO Defects
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalle Betta, G.-F.; Ye, J. Silicon Radiation Detector Technologies: From planar to 3D. Chips 2023, 2, 83–101. [Google Scholar] [CrossRef]
- Jia, X.; He, L. Noise-based analysis of the reliability of solar cells. AIP Adv. 2021, 11, 045206. [Google Scholar] [CrossRef]
- Bisogni, M.G.; Del Guerra, A.; Belcari, N. Medical applications of silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. A 2019, 926, 118–128. [Google Scholar] [CrossRef]
- Udvarheli, P.; Somogyi, B.; Thiering, G.; Gali, A. Identification of a telecom wavelength single photon emitter in silicon. Phys. Rev. Lett. 2021, 127, 196402. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ivanov, V.; Jhuria, K.; Ji, Q.; Persaud, A.; Redjem, W.; Simoni, J.; Zhiyenbayev, Y.; Kante, B.; Lopez, J.G.; et al. Quantum emitter formation dynamics and probing of radiation-induced atomic disorder in silicon. Phys. Rev. Appl. 2023, 20, 014508. [Google Scholar] [CrossRef]
- Pichler, P. Intrinsic point defects, impurities and their diffusion in Si. In Computational Microelectronics; Selbercherr, S., Ed.; Springer: Vienna, Austria, 2004; pp. 378–390. [Google Scholar]
- McCluskey, M.D.; Jannoti, A. Defects in Semiconductors. J. Appl. Phys. 2020, 127, 190401. [Google Scholar] [CrossRef]
- Drabold, D.A.; Estreicher, S.K. (Eds.) Theory of defects in Semiconductors. In Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 14, pp. 1–295. [Google Scholar]
- Stein, H.J. Nitrogen in Crystalline Silicon, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon. In Material Research Society Symposia Proceedings; Mikkelsen, J.C., Jr., Pearton, S.J., Corbett, S.W., Pennycook, S.J., Eds.; Cambridge University Press: Cambridge, UK, 1986; Volume 59, pp. 523–535. [Google Scholar]
- Habermeier, H.-U. Nitrogen in Silicon-Mechanical, Electrical and Optical properties. In Gettering and Defect Engineering in the Semiconductor Technology; Richter, H., Ed.; Trans Tech Publications: Stafa-Zurich, Switzerland, 1987; pp. 72–85. [Google Scholar]
- Yang, D.; Yu, X. Nitrogen in Silicon. In Defects and Diffusion Forum; Trans Tech Publications: Stafa-Zurich, Switzerland, 2004; Volume 230–232, pp. 199–220. [Google Scholar]
- Von Ammon, W.; Sattler, A.; Kissinger, G. Defects in Monocrystalline Silicon. In Springer Handbook of Electronic and Photonic Materials; Kasap, S., Capper, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 111–132. [Google Scholar]
- Yuan, S.; Yang, D. (Eds.) Nitrogen impurity in Crystalline Silicon. In Handbook of Photovoltaic Silicon; Springer: Berlin/ Heidelberg, Germany, 2019; pp. 463–494. [Google Scholar]
- Yu, X.; Chen, J.; Ma, X.; Yang, D. Impurity engineering of Czochralski silicon. Mater. Sci. Eng. R Rep. 2013, 74, 1–33. [Google Scholar] [CrossRef]
- Orlov, V.; Richter, H.; Fischer, A.; Reif, J.; Muller, T.; Wahlich, R. Mechanical properties of Nitrogen-doped CZ silicon crystals. Mater. Sci. Semicond. Process. 2002, 5, 403–407. [Google Scholar] [CrossRef]
- Sumino, K.; Yonenaga, I.; Imai, M. Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals. J. Appl. Phys. 1983, 54, 5016–5020. [Google Scholar] [CrossRef]
- Nakai, K.; Inoue, Y.; Yokota, H.; Ikari, A.; Takahashi, J.; Tachikawa, A.; Kitahara, K.; Ohta, Y.; Ohashi, W. Oxygen precipitation in nitrogen-doped Czochralski-grown silicon crystals. J. Appl. Phys. 2001, 89, 4301–4309. [Google Scholar] [CrossRef]
- Von Ammon, W.; Holzi, R.; Virbulis, J.; Dornberger, E.; Schmolke, R.; Graf, D. The impact of nitrogen on the defect aggregation in silicon. J. Cryst. Growth 2001, 226, 19–30. [Google Scholar] [CrossRef]
- Ishii, H.; Shiratake, S.; Oka, K.; Motonami, K.; Koyama, T.; Izimitani, J. Direct observation of crystal-Originated particles on Czochralski-grown silicon wafer surface and effect on gate oxide reliability. Jpn. J. Appl. Phys. 1996, 35, L1385–L1387. [Google Scholar] [CrossRef]
- Voronkov, V.V.; Falster, R. Nitrogen interaction with vacancies in silicon. Mater. Sci. Eng. B 2004, 114–115, 130–134. [Google Scholar] [CrossRef]
- Abe, T.; Harada, H.; Chikawa, J. Swirl defects in float-zone silicon crystals. Phys. B Condens. Matter 1983, 116, 139–147. [Google Scholar]
- Kageshima, H.; Tagushi, A.; Wada, K. Theoretical investigation of nitrogen-doped effect on vacancy aggregation processes in Si. Appl. Phys. Lett. 2000, 76, 3718–3720. [Google Scholar] [CrossRef]
- Kajiwara, K.; Torigoe, K.; Harada, K.; Hourai, M.; Nishizawa, S. Oxygen concentration dependence of as-grown defect formation in nitrogen-doped Czochralski silicon crystals. J. Cryst. Growth 2021, 570, 126236. [Google Scholar] [CrossRef]
- Murthy, C.; Lee, K.; Rengarajan, R.; Dokumaci, O.; Ronsheim, P.; Tews, H.; Inaba, S. Nitrogen-induced transient enhanced diffusion of dopants. Appl. Phys. Let. 2002, 80, 2696–2698. [Google Scholar] [CrossRef]
- Parakhonsky, A.L.; Yakimov, E.B.; Yang, D. Nitrogen effect on self-interstitial generation in Czochraski silicon revealed by gold diffusion experiments. J. Appl. Phys. 2001, 90, 3642–3644. [Google Scholar] [CrossRef]
- Sun, C.; Lou, Z.; Ai, X.; Xue, Z.; Zhang, H.; Chen, G. Effect of nitrogen doping on pulling rate range of defect-free crystal in Cz silicon. Coatings 2023, 13, 1637. [Google Scholar] [CrossRef]
- Cui, C.; Yang, D.; Yu, X.; Ma, X.; Li, L.; Que, D. Effect of nitrogen on denuded zone in Czochralski silicon wafer. Semicond. Sci. Technol. 2004, 19, 548–551. [Google Scholar] [CrossRef]
- Karoui, A.; Karoui, F.S.; Rozgonyi, G.A.; Hourai, M.; Sueoka, K. Structure, energetics, and thermal stability of nitrogen-related defects in nitrogen doped silicon. J. Electrochem. Soc. 2003, 150, G771–G777. [Google Scholar] [CrossRef]
- Gali, A.; Miro, J.; Deak, P.; Ewels, C.P.; Jones, R. Theoretical studies of nitrogen-oxygen complexes in silicon. J. Phys. Condens. Matter 1996, 8, 7711–7722. [Google Scholar] [CrossRef]
- Jones, R.; Ewels, C.; Goss, J.; Miro, J.; Deak, P.; Osberg, S.; Rasmussen, F.B. Theoretical and isotopic infrared absorption investigations of nitrogen-oxygen defects in silicon. Semicond. Sci. Thechnol. 1994, 9, 2145–2148. [Google Scholar] [CrossRef]
- Ewels, C.R.; Jones, R.; Osberg, S.; Miro, J.; Deak, P. Shallow thermal donors in silicon. Phys. Rev. Lett. 1996, 77, 865–868. [Google Scholar] [CrossRef]
- Simha, C.; Herrero-Saboya, G.; Giacomazzi, L.; Martin-Samos, L.; Hemeryck, A.; Richard, N. Deep levels and electron paramagnetic resonance parameters of subsitutional nitrogen in silicon from first principles. Nanomaterials 2023, 13, 2123. [Google Scholar] [CrossRef]
- Scheffler, L.; Lei, A.; Duum, S.; Julsgaard, B. On the nature of thermally activated defects in n-type silicon grown in nitrogen atmosphere. AIP Adv. 2022, 12, 035151. [Google Scholar] [CrossRef]
- Nakamura, M.; Murakani, S.; Udono, H. Origins of nitrogen-related deep donor center and its preceding species in nitrogen-doped silicon determined by deep-level transient spectroscopy. Appl. Phys. Express 2019, 12, 021005. [Google Scholar] [CrossRef]
- Kajiwara, K.; Epiguchi, K.; Fusegawa, K.; Mitsugi, N.; Samata, S.; Torigoe, K.; Harada, K.; Hourai, M.; Nishizawa, S. Evaluation of thermally activated defects behaviors in nitrogen-doped Czochralski silicon single crystals using deep level transient spestroscopy. Jpn. J. Appl. Phys. 2023, 62, 075504. [Google Scholar] [CrossRef]
- Brower, K.L. Deep levels nitrogen centers in laser-annealed ion-implanted silicon. Phys. Rev. B 1982, 26, 6040–6052. [Google Scholar] [CrossRef]
- Sprenger, M.; Sieverts, M.; Muller, S.H.; Ammerlaan, C.A.J. Electron paramagnetic resonance of a nitrogen-related centre in electron irradiated silicon. Solid State Commun. 1984, 51, 951–955. [Google Scholar] [CrossRef]
- Belli, M.; Fanciulli, M.; Batani, D. Electron spin resonance of substitutional nitrogen in silicon. Phys. Rev. B 2014, 89, 115207. [Google Scholar] [CrossRef]
- Sgourou, E.N.; Angeletos, T.; Chroneos, A.; Londos, C.A. Infrared study of defects in nitrogen-doped electron irradiated silicon. J. Mater. Sci. Mater. Electron. 2016, 27, 2054–2061. [Google Scholar] [CrossRef]
- Potsidi, M.S.; Angeletos, T.; Londos, C.A. The origin of infrared bands in nitrogen-doped silicon. J. Mater. Sci. Mater. Electron. 2022, 57, 5507–5517. [Google Scholar]
- Zhao, T.; Hua, C.; Lan, W.; Sun, Y.; Wu, D.; Lu, Y.; Ma, X.; Yang, D. On the mechanism underlying the elimination of nitrogen-oxygen shallow thermal donors in nitrogen-doped Czochralski silicon at elevated temperatures. J. Appl. Phys. 2021, 129, 145702. [Google Scholar] [CrossRef]
- Stoudek, R.; Humlicek, J. Infrared spectroscopy of oxygen interstitials and precipitates in nitrogen-doped silicon. Phys. B Condens. Matter 2006, 376–377, 150–153. [Google Scholar] [CrossRef]
- Rasmussen, F.B.; Oberg, S.; Jones, R.; Ewels, E.; Goss, J.; Miro, J.; Deak, P. The nitrogen-pair oxygen defect in silicon. Mater. Sci. Engineer. B 1996, 36, 91–95. [Google Scholar] [CrossRef]
- Inoue, N.; Kawamura, Y. Infrared defect dynamics-nitrogen-Vacancy complexes in float zone silicon introduced by electron irradiation. J. Appl. Phys. 2018, 123, 185701. [Google Scholar] [CrossRef]
- Tajima, M.; Masui, T.; Abe, T.; Nozaki, T. Photoluminescence associated with nitrogen in silicon. Jpn. J. Appl. Phys. 1981, 20, L423–L425. [Google Scholar] [CrossRef]
- Steele, A.G.; Lenchyshyn, L.C.; Thewalt, M.L.W. Photoluminescence study of nitrogen-oxygen donors in silicon. Appl. Phys. Lett. 1990, 56, 148–150. [Google Scholar] [CrossRef]
- Surma, B.; Misiuk, A.; Wnuk, A.; Bukowski, A.; Rzodkiewicz, W. Photoluminescence studies of defects created in nitrogen-doped silicon during annealing under enhanced pressure. Mater. Sci. Semicond. Process. 2004, 7, 404–409. [Google Scholar] [CrossRef]
- Platonenko, A.; Gentile, F.S.; Pascale, F.; Ferrari, A.M.; D’Amore, M.; Dovesi, R. Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Phys. Chem. Chem. Phys. 2019, 21, 20939. [Google Scholar] [CrossRef]
- Platonenko, A.; Gentile, F.S.; Maul, J.; Pascale, F.; Kotomin, E.A.; Dovesi, R. Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Mater. Today Commun. 2019, 21, 100616. [Google Scholar] [CrossRef]
- Goss, J.P.; Hahm, I.; Jones, R.; Briddon, P.R.; Oberg, S. Vibrational modes and electronic properties of nitrogen defects in silicon. Phys. Rev. B 2003, 67, 045206. [Google Scholar] [CrossRef]
- Sawada, H.; Kawakami, K. First-principles calculation of the interaction between nitrogen atoms and vacancies in silicon. Phys. Rev. B 2000, 62, 1851–1858. [Google Scholar] [CrossRef]
- Karoui, F.S.; Karoui, A. A density functional theory study of the atomic structure, formation energy and vibrational properties of nitrogen-vacancy-oxygen defects in silicon. J. Appl. Phys. 2010, 108, 033513. [Google Scholar] [CrossRef]
- Kageshima, H.; Taguchi, A.; Wada, K. Formation of stable N-V-O complexes in Si. Phys. B Condens. Matter 2003, 340–342, 626–629. [Google Scholar] [CrossRef]
- Potsidi, M.S.; Kuganathan, N.; Christopoulos, S.-R.G.; Sarlis, N.V.; Chroneos, A.; Londos, C.A. Theoretical investigation of nitrogen-vacancy defects in silicon. AIP Adv. 2022, 12, 025112. [Google Scholar] [CrossRef]
- Papadopoulou, K.A.; Chroneos, A.; Christopoulos, S.-R.G. The (Ns)2(Oi)n (n = 1, 2) defect in Si from Density Functional theory perspective. Phys. B Condens. Matter 2022, 643, 414184. [Google Scholar] [CrossRef]
- Christopoulos, S.-R.G.; Sgourou, E.N.; Chroneos, A.; Londos, C.A. Density functional theory study of the VmN2On (m, n = 1, 2) complexes in silicon. Mod. Phys. Lett. B 2023, 14, 2350035. [Google Scholar] [CrossRef]
- Kuganathan, N.; Christopoulos, S.-R.G.; Papadopoulou, K.A.; Sgourou, E.N.; Chroneos, A.; Londos, C.A. A density functional theory study of the CiN and CiNOi complexes in silicon. Mod. Phys. Lett. B 2023, 14, 2350154. [Google Scholar] [CrossRef]
- Brower, K.L. Jahn-Teller-distorted Nitrogen donor in laser-annealed silicon. Phys. Rev. Lett. 1980, 44, 1627–1629. [Google Scholar] [CrossRef]
- Murakami, K.; Kuribayashi, H.; Masuda, K. Electronic energy levels of off-center substitutional nitrogen in silicon: Determination by electron spin resonance measurements. Jpn. J. Appl. Phys. 1988, 27, L1414–L1416. [Google Scholar] [CrossRef]
- Murakami, K.; Kuribayashi, H.; Masuda, K. Motional effects between on-center and off-center substitutional nitrogen in silicon. Phys. Rev. B 1988, 38, 1589–1592. [Google Scholar] [CrossRef]
- Stein, H.J. Infrared absorption band of substitutional nitrogen in silicon. Appl. Phys. Lett. 1985, 47, 1339–1341. [Google Scholar] [CrossRef]
- Itoh, H.; Murakami, K.; Takita, K.; Masuda, K. Charge-state changes of substitutional nitrogen impurities in silicon induced by additional impurities and defects. J. Appl. Phys. 1987, 61, 4862–4868. [Google Scholar] [CrossRef]
- Jones, R.; Hahm, I.; Goss, J.P.; Briddon, P.R.; Oberg, S. Structure and electronic properties of nitrogen defects in silicon. Solid State Phenom. 2004, 95–96, 93–98. [Google Scholar] [CrossRef]
- Jones, R.; Oberg, S.; Rasmussen, F.B.; Nielsen, B.B. Identification of the dominant nitrogen defect in silicon. Phys. Rev. Lett. 1994, 72, 1882–1885. [Google Scholar] [CrossRef]
- Rasmussen, F.B.; Nielsen, B.B. Microstructure of the nitrogen pair in crystalline silicon by ion channeling. Phys. Rev. B 1994, 49, 16353–16360. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.J. Evidence of pairing of implanted nitrogen in silicon. In Proceedings of the 13th International Conference on Defects in Semiconductors, Coronado, CA, USA, 12–17 August 1984; The Metallurgical Society of AIME: Warrendale, PA, USA, 1985; pp. 839–845. [Google Scholar]
- Rasmussen, F.B.; Nielsen, B.B.; Jones, R.; Oberg, S. The nitrogen pair in crystalline silicon studied by ion channeling. Mater. Sci. Forum 1994, 143–147, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.S.; Schultz, P.A.; Wright, A.F. Valence and atomic size dependent exchange barriers in vacancy-mediated dopant diffusion. Appl. Phys. Let. 1998, 73, 247–249. [Google Scholar] [CrossRef]
- Adam, L.S.; Law, M.E.; Szpala, S.S.; Simpson, R.J.; Lawther, D.; Documaci, O.; Hegde, S. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon. Appl. Phys. Lett. 2001, 79, 623–625. [Google Scholar] [CrossRef]
- Abe, T.; Harada, H.; Ozawa, N.; Adomi, K. Deep level generation—Annihilation in nitrogen doped FZ crystals. In Proceedings of the Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Boston, MA, USA, 2–5 December 1985. [Google Scholar]
- Fuma, N.; Tashiro, K.; Kamumoto, K.; Takano, Y. Generation of deep Level by nitrogen diffusion in Si. Mater. Sci. Forum 1995, 196–201, 797–802. [Google Scholar] [CrossRef]
- Fuma, N.; Tashiro, K.; Kamumoto, K.; Takano, Y. Diffused nitrogen-related deep level in n-type silicon. Jpn. J. Appl. Phys. Part 1 1996, 35, 1993–1999. [Google Scholar] [CrossRef]
- Sauer, R.; Weber, J.; Zulehner, W. Nitrogen in silicon: Towards the identification of the 1.1223-eV (A, B, C) photoluminescence lines. Appl. Phys. Lett. 1984, 44, 440–442. [Google Scholar] [CrossRef]
- Alt, H.C.; Tapfer, L. Photoluminescence study of nitrogen implanted silicon. Appl. Phys. Lett. 1984, 45, 426–428. [Google Scholar] [CrossRef]
- Davies, G.; Iqbal, M.Z.; Lightowlers, E.C. Exciton self-trapping at an isoelectronic center in silicon. Phys. Rev. B 1994, 50, 11520–11530. [Google Scholar] [CrossRef] [PubMed]
- Karoui, A.; Rozgonyi, G.A. Oxygen precipitation in nitrogen doped Czochralski silicon wafers. II. Effects of nitrogen and oxygen coupling. J. Appl. Phys. 2004, 96, 3264–3271. [Google Scholar] [CrossRef]
- Yu, X.; Yang, D.; Ma, X.; Yang, J.; Li, L.; Que, D. Grown-in defects in nitrogen-doped Czochralski silicon. J. Appl. Phys. 2002, 92, 188–194. [Google Scholar] [CrossRef]
- Kageshima, H.; Taguchi, A.; Wada, K. Theoretical Investigation of Nitrogen-Doping Effect on Native Defect Aggregation Processes in Silicon; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Coomer, B.J.; Goss, J.P.; Jones, R.; Oberg, S.; Briddon, P.R. Interstitial aggregates and a new model for the I1/W optical center in silicon. Phys. B Condens. Matter 1999, 273–274, 505–508. [Google Scholar] [CrossRef]
- Briddon, P.R.; Jones, R. LDA calculations using a basis of gaussian orbitals. Phys. Stat. Sol. B 2000, 217, 131–171. [Google Scholar] [CrossRef]
- Fujita, N.; Jones, R.; Oberg, S.; Briddon, P.R. First-principles study on the local vibrational modes of nitrogen oxygen defects in silicon. Phys. B Condens. Matter 2007, 401–402, 159–162. [Google Scholar] [CrossRef]
- Fujita, N.; Jones, R.; Oberg, S.; Briddon, P.R. Nitrogen related shallow thermal donors in silicon. Appl. Phys. Lett. 2007, 91, 051914. [Google Scholar] [CrossRef]
- Yang, D.; Fan, R.; Li, L.; Que, D. Effect of nitrogen oxygen complex on electrical properties of Czochralski silicon. Appl. Phys. Lett. 1996, 68, 487–489. [Google Scholar] [CrossRef]
- Alt, H.C.; Gemeniuk, Y.V.; Bittersberger, F.; Kempf, A.; Zemke, D. Analysis of electrically active N–O complexes in nitrogen-doped CZ silicon crystals by FTIR spectroscopy. Mater. Sci. Semicond. Proc. 2006, 9, 114–116. [Google Scholar] [CrossRef]
- Suezawa, M.; Sumino, K.; Harada, H.; Abe, T. The nature of nitrogen-oxygen complexes in silicon. Jpn. J. Appl. Phys. 1988, 27, 62–67. [Google Scholar] [CrossRef]
- Suezawa, M.; Sumino, K.; Harada, H.; Abe, T. Nitrogen-Oxygen complexes as shallow donor in silicon crystals. Jpn. J. Appl. Phys. 1986, 25, L859–L861. [Google Scholar] [CrossRef]
- Inoue, N.; Nakatsu, M.; Tanahashi, K.; Yamada-Kaneta, H.; Ono, H.; Akhmetov, V.D.; Lysytskiy, O.; Richter, H. Annealing behavior of new nitrogen infrared absorption peaks in CZS silicon. Solid State Phenom. 2005, 108–109, 609–614. [Google Scholar] [CrossRef]
- Wagner, P.; Oeder, R.; Zulehner, W. Nitrogen-Oxygen complexes in Czochralski-silicon. Appl. Phys. A 1998, 46, 73–76. [Google Scholar] [CrossRef]
- Yang, D.; Que, D.; Sumino, K. Nitrogen-Oxygen complexes in silicon. Phys. Stat. Sol. B 1998, 210, 295–299. [Google Scholar] [CrossRef]
- Yang, D.; Ma, X.; Fan, R.; Li, D.; Zhang, J.; Li, L.; Que, D.; Sumino, K. Infrared absorption of nitrogen-oxygen complex in silicon. Mat. Sci. Eng. 2000, B72, 121–123. [Google Scholar] [CrossRef]
- Qi, M.W.; Tan, S.S.; Zhu, B.; Cai, P.X.; Gu, W.F.; Xu, X.M.; Shi, T.S.; Que, D.L.; Li, L.B. The evidence for interaction of N-N pair with oxygen in Czochralski silicon. J. Appl. Phys. 1991, 69, 3775–3777. [Google Scholar] [CrossRef]
- Suezawa, M.; Sumino, K. Nitrogen-Oxygen complexes in silicon. In Defects in Electronic Materials, Material Research Society Symposia Proceedings; Stavola, M., Pearton, S.J., Davies, G., Eds.; Cambridge University Press: Cambridge, UK, 1988; Volume 104, pp. 193–196. [Google Scholar]
- Ono, H.; Horikawa, M. Qualitative detection of small amounts of nitrogen in Czochralski silicon crystals. Jpn. J. Appl. Phys. 2003, 42, L261–L263. [Google Scholar] [CrossRef]
- Wagner, H.E.; Alt, H.C.; von Ammon, W.; Bittersberger, F.; Huber, A.; Koester, L. N-O related shallow donors in silicon: Stoichiometry investigations. Appl. Phys. Lett. 2007, 91, 152102. [Google Scholar] [CrossRef]
- Fujita, N.; Jones, R.; Oberg, S.; Briddon, P.R. Local vibrational modes of N2-On defects in Cz-silicon. J. Mater. Sci. Mater. Electron. 2007, 18, 683–687. [Google Scholar] [CrossRef]
- Inoue, N.; Nakatsu, M.; Ono, H. Local vibrational modes of shallow thermal donors in nitrogen-doped Cz silicon crystals. Phys. B Condens. Matter 2006, 376–377, 101–104. [Google Scholar] [CrossRef]
- Li, M.; Yang, D.; Ma, X.; Cui, C.; Que, D. Evolution of nitrogen pairs and nitrogen-oxygen complexes in nitrogen-doped Czochralski silicon. Phys. Stat. Sol. C 2007, 4, 3090–3094. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Harada, H.; Takahashi, K.; Mikayama, T.; Inoue, N. Infrared absorption analysis of nitrogen in Czochralski silicon. Solid State Phenom. 2002, 82–84, 69–74. [Google Scholar] [CrossRef]
- Cui, C.; Ma, X.; Yang, D. Enhancing oxygen precipitation in neutron-irradiated nitrogen-doped Czochrakski silicon crystals. J. Appl. Phys. 2008, 104, 123523. [Google Scholar] [CrossRef]
- Karoui, A.; Karoui, F.S.; Rozgonyi, G.A.; Hourai, M.; Sueoka, K. Characterization of nucleation sites in nitrogen doped Czochralski silicon by density functional and molecular mechanics. Solid State Phenom. 2004, 95–96, 99–104. [Google Scholar]
- Sada, A.; Noda, Y.; Sueoka, K.; Kajiwara, K.; Hourai, M. First principle analysis on void-reduction mechanism and the impact of oxygen in nitrogen-doped CZ-Si crystal. J. Cryst. Growth 2023, 610, 127176. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Yang, D. Impurity engineering in Czochralski silicon. Solid State Phenom. 2010, 156–158, 261–267. [Google Scholar] [CrossRef]
- Sun, Q.; Yao, K.H.; Gatos, H.C. Effects of nitrogen on oxygen precipitation in silicon. J. Appl. Phys. 1992, 71, 3760–3765. [Google Scholar] [CrossRef]
- Takahashi, J.; Nakai, K.; Kawakami, K.; Inoue, Y.; Yokota, H.; Tachikawa, A.; Ikari, A.; Ohashi, W. Microvoid defects in nitrogen –and /or carbon-doped Czochralski-grown silicon crystals. Jpn. J. Appl. Phys. 2003, 42, 363–370. [Google Scholar] [CrossRef]
- Hara, A.; Ohsawa, A. New carbon related defects formed in nitrogen rich Czochralski silicon crystals. Appl. Phys. Lett. 1991, 59, 1890–1892. [Google Scholar] [CrossRef]
- Dormen, A.; Pensl, G.; Sauer, R. Nitrogen-carbon radiative defect at 0.746 eV in silicon. Phys. Rev. B 1986, 33, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Dormen, A.; Pensl, G.; Sauer, R. Set of five related photoluminescence defects in silicon formed through nitrogen-carbon interactions. Phys. Rev. B 1987, 35, 9318–9321. [Google Scholar] [CrossRef] [PubMed]
- Dormen, A.; Sauer, R.; Pensl, G. Nitrogen-carbon interactions in optical defects in silicon. In Material Research Society Symposia Proceedings; Mikkelsen, J.C., Jr., Pearton, S.J., Corbett, S.W., Pennycook, S.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 59, pp. 523–535. [Google Scholar]
- Dormen, A.; Sauer, R.; Pensl, G. Vibrational mode nitrogen and carbon isotope shifts on the N1 (0.746 eV) photoluminescence spectrum in silicon. Solid State Commun. 1986, 57, 861–864. [Google Scholar] [CrossRef]
- Dormen, A.; Sauer, R.; Pensl, G. Complexing of nitrogen with carbon and oxygen in silicon: Photoluminescence studies. J. Elect. Mater. 1988, 17, 121–125. [Google Scholar] [CrossRef]
- Chroneos, A.; Jiang, C.; Grimes, R.W.; Schwingenschlögl, U.; Bracht, H. E centers in Si1-x-yGexSny alloys. Appl. Phys. Lett. 2009, 95, 112101. [Google Scholar] [CrossRef]
- Chroneos, A.; Sgourou, E.N.; Londos, C.A.; Schwingenschlögl, U. Oxygen defect processes in silicon and silicon germanium. Appl. Phys. Rev. 2015, 2, 021306. [Google Scholar] [CrossRef]
- Varotsos, P. Point defect parameters in β-PbF2 revisited. Solid State Ion. 2008, 179, 438–441. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, X.; Xu, J.; Zhou, R. Application of the cBΩ model for the calculation of oxygen self-diffusion coefficients in minerals. J. Appl. Phys. 2010, 108, 053505. [Google Scholar] [CrossRef]
- Vallianatos, F.; Saltas, V. Application of the cBΩ model to the calculation of diffusion parameters of He in olivine. Phys. Chem. Miner. 2014, 41, 181–188. [Google Scholar] [CrossRef]
- Cooper, M.W.D.; Grimes, R.W.; Fitzpatrick, M.E.; Chroneos, A. Modeling oxygen self-diffusion in UO2 under pressure. Solid State Ion. 2015, 282, 26–30. [Google Scholar] [CrossRef]
Defect | LVM/cm−1 | Levels/eV | Refs. |
---|---|---|---|
Ns | 653 | Ec−0.08, Ec−0.31, Ec−0.64 | [33,61,62] |
Ni | 550, 773, 885 | Ev+0.5, Ec−0.2 | [50,51,63] |
NiNi | 766, 963 | [9,67] | |
NsV | 663 | Ec−0.5, Ec−0.7 | [50,54] |
NiNs | 573.4, 774.1 | [63] | |
NsNs | Ec−0.42 | [6,70,71,72] | |
NiNiSiI | 930, 953 | Ev+0.2 | [39,50,79] |
NO | 722, 801, 1001 | Ec−0.06 | [14] |
NO2 | 855, 973, 1002 | [81,87] | |
N2O | 801, 996, 1026 | [9,43,88,89,90,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgourou, E.N.; Sarlis, N.; Chroneos, A.; Londos, C.A. Nitrogen-Related Defects in Crystalline Silicon. Appl. Sci. 2024, 14, 1631. https://doi.org/10.3390/app14041631
Sgourou EN, Sarlis N, Chroneos A, Londos CA. Nitrogen-Related Defects in Crystalline Silicon. Applied Sciences. 2024; 14(4):1631. https://doi.org/10.3390/app14041631
Chicago/Turabian StyleSgourou, E. N., N. Sarlis, A. Chroneos, and C. A. Londos. 2024. "Nitrogen-Related Defects in Crystalline Silicon" Applied Sciences 14, no. 4: 1631. https://doi.org/10.3390/app14041631
APA StyleSgourou, E. N., Sarlis, N., Chroneos, A., & Londos, C. A. (2024). Nitrogen-Related Defects in Crystalline Silicon. Applied Sciences, 14(4), 1631. https://doi.org/10.3390/app14041631