Landslide Detection Based on Multi-Direction Phase Gradient Stacking, with Application to Zhouqu, China
Abstract
:1. Introduction
2. Methods
2.1. Main Components of the Method
- (1)
- Data Collection and Pre-processing: SAR imagery and the DEM are acquired, with subsequent geocoding of the primary image to simulate the topographic phase under SAR coordinates using the DEM. Interferometric pairs are selected based on predefined spatial and temporal baseline thresholds, following a construction approach akin to the Small Baseline Subset (SBAS), resulting in acquisition of differential interferograms composed of small baseline sets. Processing was performed in the GAMMA202202 software.
- (2)
- Multi-direction phase Gradient Stacking and Fusion: the phase gradient calculation method is applied to calculate the phase gradients in the four directions of the interferograms, and then the phase gradients in the four directions of the interferograms are stacked with the temporal baseline as the weighting factor. The noise is removed by means of spatial filtering, and the stacked results of the phase gradients are fused in the four directions, and the fused stacked results of the phase gradients are obtained.
- (3)
- Landslide detection: leveraging the fused multi-direction phase gradient stacking results, regions exhibiting outliers are identified. These outliers predominantly arise from deformation-induced anomalies, where the interference pattern stacking across the time series mitigates atmospheric influences. We consider these anomalous regions as target areas, especially regions that indicate landslides.
2.2. Principles Involved in the Method
2.2.1. Phase Gradient Stacking and Fusion
2.2.2. Landslide Detection
3. Study Area and Used Data
3.1. Study Area
3.2. Used Dataset
3.3. Data Processing
4. Result
4.1. Landslide Detection Based on Multi-Direction Phase Gradient Stacking
4.2. Landslide Detection by SBAS
5. Discussion
5.1. Comparison of the Difference and Efficiency of Multi-Direction Phase Gradient Stacking and SBAS for Typical Landslide Detection
5.2. Comparison of Range and Azimuth Phase Gradient Stacking
5.3. The Effect of Interference on the Selection of the Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Xu, Q. Understanding and consideration of related issues in early identification of potential geohazards. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1651–1659. [Google Scholar]
- Wang, X.; Fan, X.; Xu, Q.; Du, P. Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy. ISPRS J. Photogramm. Remote Sens. 2022, 187, 225–239. [Google Scholar] [CrossRef]
- Martinez, S.N.; Schaefer, L.N.; Allstadt, K.E.; Thompson, E.M. Evaluation of Remote Mapping Techniques for Earthquake-Triggered Landslide Inventories in an Urban Subarctic Environment: A Case Study of the 2018 Anchorage, Alaska Earthquake. Front. Earth Sci. 2021, 9, 673137. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Kelevitz, K.; Sadeghi, Z.; Wright, T.; Thompson, J.; Achim, A.M.; Bull, D. Detecting Ground Deformation in the Built Environment Using Sparse Satellite InSAR Data with a Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2940–2950. [Google Scholar] [CrossRef]
- Ngo, P.-T.T.; Pham, T.D.; Nhu, V.-H.; Le, T.T.; Tran, D.A.; Phan, D.C.; Hoa, P.V.; Amaro-Mellado, J.L.; Bui, D.T. A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. J. Hydrol. 2021, 596, 125682. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Seo, M.; Sadeghi-Niaraki, A.; Choi, S.-M. Flash flood detection and susceptibility mapping in the Monsoon period by integration of optical and radar satellite imagery using an improvement of a sequential ensemble algorithm. Weather Clim. Extremes 2023, 41, 100595. [Google Scholar] [CrossRef]
- Fruneau, B.; Achache, J.; Delacourt, C. Observation and modeling of the Saint-Etienne-de-Tinee landslide using SAR interferometry. Tectonophysics 1996, 265, 181–190. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1528–1530. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. Solid Earth 1998, 103, 30183–30204. [Google Scholar] [CrossRef]
- Shi, X.; Hu, X. Characterization of landslide displacements in an active fault zone in Northwest China. Earth Surf. Process. Landf. 2023, 48, 1926–1939. [Google Scholar] [CrossRef]
- Delbridge, B.G.; Bürgmann, R.; Fielding, E.; Hensley, S.; Schulz, W.H. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide. J. Geophys. Res. Solid Earth 2016, 121, 3951–3977. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J.; Lu, Z.; Hu, X.; Sun, Q.; Liu, J.; Zhu, J.; Li, Z. Enhanced Kinematic Inversion of 3-D Displacements, Geometry, and Hydraulic Properties of a North-South Slow-Moving Landslide in Three Gorges Reservoir. J. Geophys. Res. Solid Earth 2023, 128, e2022JB026232. [Google Scholar] [CrossRef]
- Liu, X.; Yao, X.; Yao, J. Accelerated Movements of Xiaomojiu Landslide Observed with SBAS-InSAR and Three-Dimensional Measurements, Upper Jinsha River, Eastern Tibet. Appl. Sci. 2022, 12, 9758. [Google Scholar] [CrossRef]
- Shi, X.; Liao, M.; Li, M.; Zhang, L.; Cunningham, C. Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China. Remote Sens. 2016, 8, 136. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.; et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Tang, X.; Zhang, X.; Fan, H.; Wang, Y. Research on the Applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for Mining Region Subsidence Detection in the Datong Coalfield. Remote Sens. 2022, 14, 3314. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.-s.; Feng, G.; Lee, C.-W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Smith-Konter, B.; Sandwell, D.T.; Xu, X. Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes. Seismol. Res. Lett. 2020, 91, 1979–1985. [Google Scholar] [CrossRef]
- Zoe Yin, H.; Xu, X.; Haase, J.S.; Douilly, R.; Sandwell, D.T.; Mercier de Lepinay, B. Surface Deformation Surrounding the 2021 Mw 7.2 Haiti Earthquake Illuminated by InSAR Observations. Bull. Seismol. Soc. Am. 2022, 113, 41–57. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T. High-Resolution Interseismic Strain Mapping from InSAR Phase-Gradient Stacking: Application to the North Anatolian Fault with Implications for the Non-Uniform Strain Distribution Related to Coseismic Slip Distribution. Geophys. Res. Lett. 2023, 50, e2023GL104168. [Google Scholar] [CrossRef]
- Peyret, M.; Djamour, Y.; Rizza, M.; Ritz, J.F.; Hurtrez, J.E.; Goudarzi, M.A.; Nankali, H.; Chéry, J.; Le Dortz, K.; Uri, F. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Eng. Geol. 2008, 100, 131–141. [Google Scholar] [CrossRef]
- Shen, Y.; Dai, K.; Wu, M.; Zhuo, G.; Wang, M.; Wang, T.; Xu, Q. Rapid and Automatic Detection of New Potential Landslide Based on Phase-Gradient DInSAR. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4514205. [Google Scholar] [CrossRef]
- Cao, Y.; Hamling, I.; Massey, C.; Upton, P. Slow-Moving Landslides Triggered by the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand: A New InSAR Phase-Gradient Based Time-Series Approach. Geophys. Res. Lett. 2023, 50, e2022GL102064. [Google Scholar] [CrossRef]
- Hu, X.; Bürgmann, R.; Fielding, E.J.; Lee, H. Internal kinematics of the Slumgullion landslide (USA) from high-resolution UAVSAR InSAR data. Remote Sens. Environ. 2020, 251, 112057. [Google Scholar] [CrossRef]
- Li, D.; Tang, X.; Tu, Z.; Fang, C.; Ju, Y. Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China. Remote Sens. 2023, 15, 3850. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Q.; Wang, T.; Li, W.; Xu, Q.; Ge, D. Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network. Front. Environ. Sci. 2022, 10, 963322. [Google Scholar] [CrossRef]
- Xin, H. Slew of landslides unmask hidden geological hazards. Science 2010, 330, 744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, X.; Novellino, A.; Dijkstra, T.; Chen, G.; Jordan, C.; Li, Y.; Su, X. Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 2021, 19, 35–50. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, H.; Hu, S.; Yang, D.; Liu, Z. Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12, 2018, China. Landslides 2020, 18, 383–396. [Google Scholar] [CrossRef]
- Ding, Y.X.; Peng, S.Z. Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Dai, C.; Li, W.; Wang, D.; Lu, H.; Xu, Q.; Jian, J. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. J. Earth Sci. 2021, 32, 1092–1103. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2013, 11, 167–194. [Google Scholar] [CrossRef]
- Schäbitz, M.; Janssen, C.; Wenk, H.R.; Wirth, R.; Schuck, B.; Wetzel, H.U.; Meng, X.; Dresen, G. Microstructures in landslides in northwest China—Implications for creeping displacements? J. Struct. Geol. 2018, 106, 70–85. [Google Scholar] [CrossRef]
- Jiang, X.-z.; Wen, B.-p. Creep Behavior of the Slip Zone of a Giant Slow-Moving Landslide in Northwest China: The Suoertou Landslide as an Example. In Landslide Science for a Safer Geoenvironment; Springer: Cham, Switzerland, 2014; pp. 141–145. [Google Scholar]
- Liu, Z.; Qiu, H.; Zhu, Y.; Liu, Y.; Yang, D.; Ma, S.; Zhang, J.; Wang, Y.; Wang, L.; Tang, B. Efficient Identification and Monitoring of Landslides by Time-Series InSAR Combining Single- and Multi-Look Phases. Remote Sens. 2022, 14, 1026. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Yang, M.; Liao, M. Complex surface displacements of the Nanyu landslide in Zhouqu, China revealed by multi-platform InSAR observations. Eng. Geol. 2023, 317, 107069. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Chen, G.; Qiao, L.; Zeng, R.; Chang, J. Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 2015, 13, 1273–1284. [Google Scholar] [CrossRef]
Senor | Band | Track | Pass Direction | Pixel Spacing (m) in Rg × Az | Number of Images | Temporal Coverage |
---|---|---|---|---|---|---|
Sentinel-1A | C | 55 | Ascending | 2.33 × 13.95 | 71 | 22 March 2018–19 September 2020 |
Sentinel-1A | C | 62 | Descending | 2.33 × 13.95 | 74 | 22 March 2018–19 September 2020 |
Landslide | Longitude | Latitude | Area (km2) | Elevation (m) | Type | Landslide | Longitude | Latitude | Area (km2) | Elevation (m) | Type |
---|---|---|---|---|---|---|---|---|---|---|---|
A/D1 | 104.330 | 33.801 | 3.144 | 1863 | Earth-flow | A21 | 104.226 | 33.811 | 0.209 | 1625 | Slide |
A/D2 | 104.328 | 33.790 | 1.676 | 1937 | Slide | A22 | 104.294 | 33.769 | 0.276 | 1742 | Slide |
A/D3 | 104.392 | 33.772 | 0.288 | 1597 | Slide | A23 | 104.370 | 33.804 | 0.192 | 1647 | Slide |
A/D4 | 104.414 | 33.747 | 1.672 | 1768 | Slide | A24 | 104.276 | 33.805 | 0.951 | 1908 | Slide |
A/D5 | 104.400 | 33.739 | 0.258 | 1522 | Slide | A25 | 104.285 | 33.810 | 0.182 | 1930 | Slide |
A/D6 | 104.418 | 33.730 | 0.645 | 1743 | Slide | A26 | 104.367 | 33.773 | 0.456 | 1626 | Slide |
A/D7 | 104.401 | 33.639 | 1.222 | 2179 | Earth-flow | D20 | 104.390 | 33.781 | 0.342 | 1774 | Slide |
A/D8 | 104.523 | 33.725 | 0.391 | 1566 | Slide | D21 | 104.408 | 33.740 | 0.104 | 1357 | Slide |
A/D9 | 104.516 | 33.742 | 0.204 | 1665 | Slide | D22 | 104.450 | 33.717 | 0.0797 | 3108 | Slide |
A/D10 | 104.340 | 33.620 | 0.204 | 2043 | Slide | D23 | 104.447 | 33.726 | 0.348 | 1676 | Slide |
A/D11 | 104.500 | 33.736 | 3.690 | 1682 | Slide | D24 | 104.463 | 33.729 | 0.409 | 2136 | Slide |
A/D12 | 104.385 | 33.647 | 0.440 | 2196 | Slide | D25 | 104.436 | 33.791 | 0.221 | 1564 | Slide |
A/D13 | 104.384 | 33.641 | 0.412 | 2164 | Slide | D26 | 104.245 | 33.859 | 0.172 | 2356 | Slide |
A/D14 | 104.510 | 33.623 | 0.180 | 1608 | Slide | D27 | 104.259 | 33.747 | 0.252 | 2096 | Slide |
A/D15 | 104.543 | 33.644 | 0.424 | 1286 | Slide | D28 | 104.436 | 33.643 | 0.913 | 1876 | Slide |
A/D16 | 104.537 | 33.783 | 0.435 | 1425 | Slide | D29 | 104.450 | 33.697 | 0.098 | 1720 | Slide |
A/D17 | 104.502 | 33.791 | 0.539 | 2096 | Slide | D30 | 104.421 | 33.737 | 0.081 | 1984 | Slide |
A/D18 | 104.416 | 33.759 | 0.470 | 1789 | Slide | D31 | 104.416 | 33.759 | 0.470 | 1838 | Slide |
A/D19 | 104.507 | 33.690 | 0.159 | 1718 | Slide | D32 | 104.320 | 33.822 | 0.4523 | 2294 | Slide |
A20 | 104.240 | 33.795 | 0.965 | 1593 | Slide |
Method | Number of Landslides Detection | |
---|---|---|
Ascending | Descending | |
Multi-direction phase gradient stacking | 26 | 32 |
SBAS | 19 | 25 |
Method | Total Time (Seconds) | |
---|---|---|
Ascending | Descending | |
Multi-direction phase gradient stacking | 404 | 375 |
SBAS | 3158 | 3427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, T.; Sun, Q.; Hu, J. Landslide Detection Based on Multi-Direction Phase Gradient Stacking, with Application to Zhouqu, China. Appl. Sci. 2024, 14, 1632. https://doi.org/10.3390/app14041632
Xiong T, Sun Q, Hu J. Landslide Detection Based on Multi-Direction Phase Gradient Stacking, with Application to Zhouqu, China. Applied Sciences. 2024; 14(4):1632. https://doi.org/10.3390/app14041632
Chicago/Turabian StyleXiong, Tao, Qian Sun, and Jun Hu. 2024. "Landslide Detection Based on Multi-Direction Phase Gradient Stacking, with Application to Zhouqu, China" Applied Sciences 14, no. 4: 1632. https://doi.org/10.3390/app14041632
APA StyleXiong, T., Sun, Q., & Hu, J. (2024). Landslide Detection Based on Multi-Direction Phase Gradient Stacking, with Application to Zhouqu, China. Applied Sciences, 14(4), 1632. https://doi.org/10.3390/app14041632