Crustal Apparent Density Variations in the Middle Segment of the North Tianshan Mountains and Their Tectonic Significance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gravity Monitoring Network in the Middle Segment of the North Tianshan Mountains
2.2. Tectonic Background
3. Results
3.1. Equivalent Source Inversion
3.1.1. Basic Principles of the Inversion
3.1.2. Checkerboard Test
3.1.3. Time-Varying Gravity Field
3.1.4. Apparent Density Changes of the Sources
3.2. Tectonic Significance of the Middle Segment of the North Tianshan Mountains
3.2.1. The Hutubi Earthquake
3.2.2. InSAR Coseismic Deformation Field
3.2.3. Inversion of the Coseismic Fault Slip Model
3.3. Tectonic Significance of the Study Area
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Shen, C.; Liu, F.; Xu, Y.; Li, H.; Guo, S.; Zhao, Y. Application of Earthquake Prediction Based on Gravity Observation. Earthq. Res. China 2020, 36, 708–717. [Google Scholar]
- Zhu, Y.; Zhang, Y.; Yang, X.; Liu, F.; Zhang, G.; Zhao, Y.; Wei, S.; Mao, J.; Zhang, S. Progress of Time-Varying Gravity in Seismic Research. Rev. Geophys. Planet. Phys. 2022, 53, 278–291. [Google Scholar]
- Walsh, J.B. An Analysis of Local Changes in Gravity Due to Deformation. Pure Appl. Geophys. 1975, 113, 97–106. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, H.; Lu, Z. Variations of Gravity Before and after the Haicheng Earthquake, 1975, and the Tangshan Earthquake, 1976. Phys. Earth Planet. Inter. 1979, 18, 330–338. [Google Scholar] [CrossRef]
- Chen, S.; Xu, W.; Jiang, C. Relationship between Gravity Variation and Seismic Hazards in the Western China. Acta Seismol. Sin. 2015, 37, 575–587. [Google Scholar]
- Okubo, S. Advances in Gravity Analyses for Studying Volcanoes and Earthquakes. Proc. Jpn. Acad. Ser. B 2020, 96, 50–69. [Google Scholar] [CrossRef]
- Hinderer, J.; Hector, B.; Memin, A.; Calvo, M. Hybrid Gravimetry as a Tool to Monitor Surface and under Ground Mass Changes. In Proceedings of the International Symposium on Earth and Environmental Sciences for Future Generations, Prague, Czech Republic, 22 June–2 July 2015; International Association of Geodesy Symposia. Springer: Cham, Switzerland, 2016; Volume 147, pp. 123–130. [Google Scholar]
- Zhu, Y.; Liang, W.; Xu, Y. Medium-Term Prediction of Ms8.0 Earthquake in Wenchuan, Sichuan by Mobile Gravity. Recent Dev. World Seismol. 2008, 38, 36–39. [Google Scholar]
- Zhu, Y.; Xu, Y.; Liang, W. Medium-Term Prediction of Yutian, Xinjiang Ms7.3 Earthquake in 2008. J. Geod. Geodyn. 2008, 28, 13–15. [Google Scholar]
- Shen, C.; Zhu, Y.; Hu, M.; Tan, H.; Hao, H.; Wei, J.; Han, Y.; Li, H.; Wang, J.; Zhang, X.; et al. Time-Varying Gravity Field Monitoring and Strong Earthquake Prediction on the Chinese Mainland. Earthq. Res. China 2020, 36, 729–743. [Google Scholar]
- Wang, L.; Chen, S.; Zhuang, J.; Zhang, B.; Shi, W.; Yang, J.; Xu, W. Gravity Field Changes Reveal Deep Mass Transfer before and after the 2013 Lushan Earthquake. Commun. Earth Environ. 2023, 4, 194. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, F.; Zhang, G.; Zhao, Y.; Wei, S. Mobile Gravity Monitoring and Earthquake Prediction in China. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 820–829. [Google Scholar]
- Wang, C.; Zhang, H.; Liu, Z. Spaceborne Synthetic Aperture Radar Interferometry, 1st ed.; Science Press: Beijing, China, 2002. [Google Scholar]
- Zhang, H.; Wang, C.; Wu, T.; Tang, Y. Research on DinSAR Method Based on Coherent Target, 1st ed.; Science Press: Beijing, China, 2009. [Google Scholar]
- Zhao, D.; Qu, C.; Zhang, G.; Gong, W.; Shan, X.; Zhu, C.; Zhang, G.; Song, X. Applications and Advances for the Coseismic Deformation Observations, Earthquake Emergency Response and Seismogenic Structure Investigation Using in SAR. Seismol. Geol. 2023, 45, 570–592. [Google Scholar]
- Massonnet, D.; Rabaute, T. Radar Interferometry: Limits and Potential. IEEE Trans. Geosci. Remote 1993, 31, 455–464. [Google Scholar] [CrossRef]
- Zebker, H.; Rosen, P.; Goldstein, R.; Gabriel, A.; Werner, C. On The Derivation of Coseismic Displacement Fields Using Differential Radar Interferomentry: The Landers Earthquake. J. Geophys. Res. Atmos. 1994, 99, 19617–19634. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation Due To Shear And Tensile Faults In A Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Wan, L.; Liu, D.; Hou, L. Study on Structural Characteristics of Foreland Thrust Belt in Southern Margin of Junggar Basin. Oil Geophys. Prospect. 2005, S1, 40–45+138. [Google Scholar]
- Xiao, X.; Tang, Y.; Li, J. On the Tectonic Evolution of the Northern Xinjiang, Northwest China. Geosci. Xinjiang 1990, 1990, 47–68. [Google Scholar]
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef]
- Pan, Y.; Hammond, W.; Ding, H.; Mallick, R.; Jiang, W.; Xu, X.; Shun, C.; Shen, W. GPS Imaging of Vertical Bedrock Displacements: Quantification of Two-Dimensional Vertical Crustal Deformation in China. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020951. [Google Scholar] [CrossRef]
- Shen, J. The Active Fault Detecting and Seismic Risk Assessment in Urumqi City, 1st ed.; Seismological Press: Xinjiang, China, 2010. [Google Scholar]
- Jiang, Y.; Sun, W.; Kong, X.; Li, T.; Li, Y.; Zhou, P. Developmental Characteristics and Geological Significance of the Fault System in the Junggar North Tianshan Basin Transition Zone. Chin. J. Geol. 2023, 58, 398–411. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, Z.; Zhou, W.; Guo, F. Mesozoic—Cenozoic Structural Characteristics and Seismicity of the Depressions on the South and North Sides of the Tianshan Mountain. Seismol. Geol. 2000, 22, 295–304. [Google Scholar]
- Wang, X.; Lu, X.; Liu, B.; Li, J.; Liu, D. Studyon Present-Dayvertical Crust Movement and Seismic Activity in Xinjiang Area. J. Geod. Geodyn. 2009, 29, 22–27. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Yang, X.; Peng, S.; Xu, X. Late Cenozoic Tectonic Deformation and Mechanism along the Tianshan Mountain, Northwestern China. Earthq. Res. China 1996, 12, 23–36. [Google Scholar]
- Kong, F.; Zhang, X.; Liang, Q.; Chen, C. Characteristics of Isostatic Residual Topography in the Tianshan Area and Its Geological Significance. J. Geod. Geodyn. 2023, 42, 223–233. [Google Scholar] [CrossRef]
- Liu, H.; Liang, H.; Cai, L.; Xia, L.; Liu, L. Evolution and Structural Style of Tianshan and Adjacent Basins, Northwestern China. Earth Sci. 1994, 19, 727–741. [Google Scholar]
- Deng, Q.; Feng, X.; Zhang, P.; Yang, X.; Xu, X.; Peng, S.; Li, J. Reverse Fault and Fold Zone in the Urumqi Range-Front Depression of the Northern Tianshan and Its Genetic Mechanism. Earth Sci. Front. 1999, 6, 191–201. [Google Scholar]
- Wang, Y. Discussion on Neotectonic Activity and Neotectonic Stress Field in the Urumqi Fore-Mountain Depression. Xinjiang Geogr. 1984, 3, 33–39. [Google Scholar] [CrossRef]
- Feng, X. Xinjiang Paleoearthquake, (1); Xinjiang Science and Technology Health Press: Urmqi, China, 1997. [Google Scholar]
- Zhang, P.; Deng, Q.; Xu, X.; Peng, S.; Yang, X.; Feng, X.; Zhao, R.; Li, J. Blind Thrust, Folding Earthquake, and the 1906 Manas Earthquake, Xinjiang. Seismol. Geol. 1994, 16, 193–204. [Google Scholar]
- Yang, X.; Deng, Q.; Feng, X. Geometric and Kinematic Characteristics of Tugu Lu Active Reverse Fault-Anticline in the North Tianshan Mountains. Active Fault Study; Seismological Press: Beijing, China, 1996; Volume 5, pp. 42–53. [Google Scholar]
- Li, J.; Feng, X.; Chen, J. Study on the Active Reverse Fault-Fold Structure in Horgos. Active Fault Study; Seismological Press: Beijing, China, 1992; Volume 2, pp. 105–116. [Google Scholar]
- Zhang, P.; Deng, Q.; Xu, X. Deformation Characteristics and Tectonic Evolution of the Manas Active Reverse Fault-Fold Belt at the Northern Foot of Tianshan Mountains, Active Fault Study; Seismological Press: Beijing, China, 1994; Volume 3, pp. 18–32. [Google Scholar]
- Deng, Q.; Feng, X.; You, H. Deformation Characteristics and Formation Mechanism of the Dushanzi-Anjihai Active Reverse Fault-Fold Belt in Xinjiang. Active Fault Study; Seismological Press: Beijing, China, 1991; Volume 1, pp. 17–36. [Google Scholar]
- Jamison, W. Geometric Analysis of Fold Development in Overthrust Terraces. J. Struct. Geol. 1987, 9, 207–219. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Wang, Q.; Zubovich, A. Analysis of Present—Day Crustal Deformation of Tianshan. J. Geod. Geodyn. 2005, 2005, 63–68. [Google Scholar]
- Liu, J.; Wang, Q.; Li, J.; Wu, C.; Zhao, B.; Kong, X. Relocation of the Hutubi Ms6. 2 Earthquake Sequence on 8 December 2016 and Analysis of the Seismogenic Structure. Seismol. Geol. 2018, 40, 566–578. [Google Scholar]
- Lu, R.; He, D.; Xu, X.; Wang, X.; Tan, X.; Wu, X. Seismotectonics of the 2016 M6.2 Hutubi Earthquake: Implications for the 1906 M7.7 Manas Earthquake in the Northern Tian Shan Belt, China. Seismol. Res. Lett. 2018, 89, 13–21. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Yao, Q.; Cui, R.; Long, H.; Han, Y. The Preliminary Study on the Seismogenic Structure of the Hutubi M_S6.2 Earthquake. Seismol. Geol. 2018, 40, 161–175. [Google Scholar]
- Shen, C. Preliminary Analysis of Coupling Movement between Crustal Deformation and Density Change. J. Geod. Geodyn. 2005, 25, 7–12. [Google Scholar] [CrossRef]
- Liu, D.; Chen, S.; Wang, X.; Zhang, B.; Li, J.; Wu, C.; Lu, H. The Apparent Density Variation of the Focal Area before and after Jiashi Ms6.4 Earthquake and Its Tectonic Significance. Seismol. Geol. 2021, 43, 311–328. [Google Scholar] [CrossRef]
- Heck, B.; Seitz, K. A Comparison of the Tesseroid, Prism and Point-Mass Approaches for Mass Reductions in Gravity Field Modelling. J. Geodesy 2007, 81, 121–136. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhang, B.; Lu, H. Analysis of the Variation of Gravity Field Source before the 2013 Lushan Ms7.0 Earthquake. Earthquake 2021, 41, 78–92. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D. 3-D Inversion of Gravity Data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
- Akaike, H. Likelihood and the Bayes Procedure; Bayesian Statistics; Bernardo, J., Degroot, M., Lindley, D., Smith, A., Eds.; University Press: Valencia, Spain, 1980; pp. 143–166. [Google Scholar]
- Han, J.; Chen, S.; Lu, H.; Xu, W. Time-Variable Gravity Field Determination Using Slepian Functions and Terrestrial Measurements: A Case Study in North China with Data From 2011 to 2013. Chin. J. Geophys. 2021, 64, 1542–1557. [Google Scholar]
- Yang, J.; Chen, S.; Li, H.; Zhang, B.; Ruan, M. Modeling Experiment and Anomaly Analysis of Time-Varying Gravity Field in South China. Earthquake 2021, 41, 141–152. [Google Scholar]
- Yushan, A.; Liu, D.; Yasen, A.; Chen, L.; Li, J.; Zhao, L.; Li, B. Field Source Resolution of Mobile Gravity Network in Northern Tianshan. J. Geod. Geodyn. 2023, 2023, 1–7. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, S.; Li, H.; Yang, J.; Han, J.; Lu, H. Time-Varying Gravity Inversion Using Spherical Model and Synthetic Test. Earthquake 2021, 41, 13–24. [Google Scholar]
- Mao, J.; Zhu, Y. Progress in the Application of Ground Gravity Observation Data in Earthquake Prediction. Adv. Earth Sci. 2018, 33, 236–247. [Google Scholar] [CrossRef]
- Hu, M.; Hao, H.; Li, H.; Zhu, Y. Quantitative Analysis of Gravity Changes for Earthquake Prediction. Earthq. Res. China 2019, 35, 417–430. [Google Scholar]
- Chen, S.; Wang, Q.; Wang, Q.; Wang, Y.; Lu, H.; Xu, W.; Shi, L.; Guo, F. The 3D Density Structure and Gravity Change of Ludian Ms6.5 Yunnan epicenter and Surrounding Regions. Chin. J. Geophys. 2014, 57, 3080–3090. [Google Scholar]
- Application Of Isostasy Theory in The Elevation Calculation of Mount Everest. Bull. Surv. Mapp. 1975, 4, 34–39. Available online: https://www.cnki.com.cn/Article/CJFDTotal-CHTB197504011.htm (accessed on 1 January 2024).
- Kong, X.; Chen, X.; Liu, J.; Zhong, S. Relocation of Mainshock and Aftershocks of Hutubi Earthquake with Ms6.2 Occurred on December 8th, 2016. Inland Earthq. 2017, 31, 237–241. [Google Scholar]
- Liu, G.; Qiao, X.; Xiong, W.; Zhou, Y.; Nie, Z.; Xia, C. Source Models for the 2016 Mw6.0 Hutubi Earthquake, Xinjiang, China: A Possible Reverse Event. Geod. Geodyn. 2017, 8, 311–318. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, B.; Zhang, R.; Cai, J.; Fu, Y.; Liu, Q.; Yu, B.; Li, Z. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 980–995. [Google Scholar]
- Wang, Y. Comparison and Analysis of Orbit Error Methods in Palsar Interferogram. Geotech. Investig. Surv. 2015, 43, 55–56. [Google Scholar]
- Jonsson, S. Fault Slip Distribution of the 1999 Mw7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, S.; Zou, L.; Liu, J. Mechanism of the 2016 Hutubi, Xinjiang, Ms6.2 Mainshock and Relocation of Its Aftershock Sequences. Seismol. Geol. 2019, 41, 44–57. [Google Scholar] [CrossRef]
- Medwedeff, D. Geometry and Kinematics of an Active, Laterally Propagating Wedge Thrust, Wheeler Ridge, California. In Structural Geology of Fold and Thrust Belts; Mitra, S., Fisher, G., Eds.; John Hopkins University Press: Baltimore, MD, USA, 1992; pp. 3–28. [Google Scholar]
- Shaw, J.; Connors, C.; Suppe, J. Seismic Interpretation of Contractional Fault-Related Folds, an American Association of Petroleum Geologists Seismic Atlas; American Association of Petroleum Geologists Special Publication: Houston, TX, USA, 2005. [Google Scholar]
- Mount, V.; Martindale, K.; Griffith, T.; Byrd, J. Basement-Involved Contractional Wedge Structural Styles: Examples from the Hanna Basin, Wyoming. In Thrust Fault Related Folding; Mcclay, K., Shaw, J.H., Suppe, J., Eds.; AAPG Memoir 94; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2011; pp. 271–282. [Google Scholar]
- Guan, S.W.; Stockmeyer, J.; Shaw, J.; Plesch, A.; Zhang, J. Structural Inversion, Imbricate Wedging, And Out-of-Sequence Thrusting in the Southern Junggar Fold-and-Thrust Belt, Northern Tian Shan, China. AAPG Bull. 2016, 100, 1443–1468. [Google Scholar] [CrossRef]
- Stein, R.; Yeats, R. Hidden Earthquakes. Sci. Am. 1989, 260, 48–57. [Google Scholar] [CrossRef]
- Deng, Q.; Feng, X.; Yang, X. Study on Holocene Paleoearthquake by Large Trench in the Manas—Tugulu Reverse Faultand-Fold Zone along Northern Margin of the Tianshan Mountain in Xinjiang in Research on Active Faults; Institute of Geology SSB; Seismological Press: Beijing, China, 1994; Volume 3. [Google Scholar]
- Charvet, J.; Shu, L.; Charvet, S.; Wang, B.; Faure, M.; Cluzel, D.; Chen, Y.; Jong, K. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Sci. China Earth Sci. 2011, 54, 166–184. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, L.; Qin, K.; Sun, S.; Li, J. Paleozoic Accretionary and Collisional Tectonics of The Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef]
- Chen, K.; Charles, G.; Romain, A.; Chen, Y.; Mei, H.; Lin, W.; Wang, Q. A Multidiscipline Method of Geological Survey, Seismic Profile and Gravity Measurement Applied to Fold-and-Thrust Belt: A Case Study along the Hutubi River in the Northern Piedmont of Tianshan. Chin. J. Geophys. 2014, 57, 75–87. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, J.; Chen, Q.; Wang, Z.; Tsai, M. A Blind Thrust and Overlying Folding Earthquake of the 2016 Mw6. 0 Hutubi Earthquake in the Northern Tien Shan Fold-and-Thrust Belts, China. Bull. Seismol. Soc. Am. 2019, 109, 770–779. [Google Scholar] [CrossRef]
- Yin, A.; Nie, S.; Craig, P.; Harrison, T.; Ryerson, F.; Qian, X. Late Cenozoic Tectonic Evolution of the Southern Chinese Tian Shan. Tectonics 1998, 17, 1–27. [Google Scholar] [CrossRef]
- Zubovich, A.; Wang, X.; Scherba, Y.; Schelochkov, G.; Reilinger, R.; Mosienko, O.; Molnar, P.; Michajljow, W.; Makarov, V.; Li, J.; et al. Gps Velocity Field for The Tien Shan and Surrounding Regions. Tectonics 2010, 29, Tc6041. [Google Scholar] [CrossRef]
- Bu, Z.; Li, Y.; Tang, L.; Jing, Y.; Chen, L. Seismogenic Fault of the 2016 Hutubi M6. 2 Earthquake Constraint from the Borehole Strain Observations. J. Seismol. Res. 2021, 44, 64–71. [Google Scholar]
- Suppe, J. Geometry and Kinematics of Fault-Bend Folding. Am. J. Sci. 1983, 283, 684–721. [Google Scholar] [CrossRef]
- Suppe, J.; Connors, C.; Zhang, Y. Shear Fault Bend Folding. In Thrust Tectonics and Hydrocarbon Systems; AAPG Memoir; Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2004; Volume 82, pp. 303–323. [Google Scholar]
- Kao, H.; Chen, W. The Chi-Chi Earthquake Sequence: Active Out-of-Sequence Thrust Faulting in Taiwan. Science 2000, 288, 2346–2349. [Google Scholar] [CrossRef]
- Chen, W.; Huang, B.; Chen, Y.; Lee, Y.; Yang, C.-N.C.; Lo, C.; Chang, H.; Sung, Q.; Huang, N.; Lin, C.; et al. 1999 Chi-Chi Earthquake: A Case Study on the Role of Thrust-Ramp Structures for Generating Earthquakes. Bull. Seismol. Soc. Am. 2001, 91, 986–994. [Google Scholar] [CrossRef]
- Johnson, K.; Segall, P. Imaging the Ramp-Décollement Geometry of the Chelungpu Fault Using Coseismic GPS Displacements from the 1999 Chi-Chi, Taiwan Earthquake. Tectonophysics 2004, 378, 123–139. [Google Scholar] [CrossRef]
- Guzofski, C.; Shaw, J.; Lin, G.; Shearer, P. Seismically Active Wedge Structure Beneath the Coalinga Anticline, San Joaquin Basin, California. Geophys. Res. 2007, 112, B03s05. [Google Scholar] [CrossRef]
- Lu, R.; Xu, X.; He, D.; John, S.; Liu, B.; Wang, F.; Tan, X.; Li, Y. Seismotectonics of the 2013 Lushan Mw 6.7 Earthquake: Inversion Tectonics in the Eastern Margin of the Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 8236–8243. [Google Scholar] [CrossRef]
- Yang, X.; Deng, Q.; Zhang, P.; Xu, X.; Yu, G.; Feng, X. Active Reverse Fault-Fold Zones and Estimation of Potential Earthquake Sources in Northern Tianshan. Seismol. Geol. 1998, 20, 193–200. [Google Scholar]
- Yang, X.; Gu, M.; Sun, Z.; Zhao, C.; Zhou, Q. Multilayered Reverse Faults and Deep Structures in the Manas Earthquake Area, Northern Tianshan. Seismol. Geol. 2002, 24, 303–314. [Google Scholar]
- Wu, G.; Luo, Z.; Lai, Q.; Luo, W. Gravity Variation in The Western Yunnan Earthquake Prediction Test Site (Wyepts) before the Ms 7.3 Earthquake Occurrence on the Border Between China and Myanmar to the West of Menglian, Yunnan Province. Earthquake 1998, 18, 146–154. [Google Scholar]
Satellite | Track (No.) | Subdivision Number | Observation Time | Vertical Baseline of Interference Pairs (m) | Azimuth (°) | Incidence Angle (°) |
---|---|---|---|---|---|---|
Sentinel-1A | Ascending track (114) | 12 | Master image: 19 November 2016 Sub-image: 13 December 2016 | −0.6 | 346 | 39.4 |
Sentinel-1B | Descending track (92/3) | 3 | Master image: 24 November 2016 Sub-image: 18 December 2016 | 125.4 | 194 | 33.6 |
Data Source | Strike (°) | Dip (°) | Slip Angle (°) | Focal Depth (°) | Magnitude (MW) |
---|---|---|---|---|---|
USGS | 269 | 71 | 93 | 17.6 | 6.0 |
GCMT | 272 | 68 | 92 | 20.3 | 6.0 |
SCANDEC | 276 | 70 | 95 | 20 | 6.0 |
CENC | 277 | 69 | 88 | 19 | 6.0 |
IGCEA | 273 | 70 | 108 | 17.6 | 5.95 |
Present study | 276 | 70 | 98.77 | 17.85 | 5.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, X.; Liu, D.; Yushan, A.; Li, J.; Chen, R.; Chen, L.; Li, R. Crustal Apparent Density Variations in the Middle Segment of the North Tianshan Mountains and Their Tectonic Significance. Appl. Sci. 2024, 14, 1694. https://doi.org/10.3390/app14051694
Kong X, Liu D, Yushan A, Li J, Chen R, Chen L, Li R. Crustal Apparent Density Variations in the Middle Segment of the North Tianshan Mountains and Their Tectonic Significance. Applied Sciences. 2024; 14(5):1694. https://doi.org/10.3390/app14051694
Chicago/Turabian StyleKong, Xiangkui, Daiqin Liu, Ailixiati Yushan, Jie Li, Rongliu Chen, Li Chen, and Rui Li. 2024. "Crustal Apparent Density Variations in the Middle Segment of the North Tianshan Mountains and Their Tectonic Significance" Applied Sciences 14, no. 5: 1694. https://doi.org/10.3390/app14051694
APA StyleKong, X., Liu, D., Yushan, A., Li, J., Chen, R., Chen, L., & Li, R. (2024). Crustal Apparent Density Variations in the Middle Segment of the North Tianshan Mountains and Their Tectonic Significance. Applied Sciences, 14(5), 1694. https://doi.org/10.3390/app14051694