Photoconductive TiO2 Dielectrics Prepared by Plasma Spraying
Abstract
:1. Introduction
- How can the plasma spray system be set up to ensure that a TixOy coating (with x and y being exactly known) is obtained from TiO2 powder?
- Once one has obtained a TixOy coating, how is the responsibility for a change in the addressed property (e.g., electrical resistance) distributed between the phenomena at the (i) lattice level, i.e., plasma-induced oxygen-deficient stoichiometry, and (ii) the macroscopic level, i.e., the specific lamellar character of the sprayed coating with its flat pores and crack network?
- Is there an important difference in the coating’s oxygen content when the starting powder is in the rutile or anatase phases of TiO2?
2. Experimental Section
2.1. Feedstock Powder and Spray Process
2.2. Characterization Techniques
2.2.1. Microstructure
2.2.2. Dielectric Parameters
2.2.3. Electrical Response to Visible Light
3. Results and Discussion
3.1. Microstructure and Porosity
3.2. Dielectric Behavior
3.3. Photoconductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardon, M.; Guilemany, J.M. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review. J. Therm. Spray Technol. 2014, 23, 577–595. [Google Scholar] [CrossRef]
- Sharma, A.; Gouldstone; Sampath, S.; Gambino, R.J. Anisotropic Electrical Conduction from Heterogeneous Oxidation States in Plasma Sprayed TiO2 Coatings. J. Appl. Phys. 2006, 100, 114906. [Google Scholar] [CrossRef]
- Bordes, M.C.; Vicent, M.; Moreno, R.; García-Montaño, J.; Serra, A.; Sánchez, E. Application of Plasma-sprayed TiO2 Coatings for Industrial (Tannery) Wastewater Treatment. Ceram. Int. 2015, 41, 14468–14474. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, C. Characterization of Plasma Sprayed Nano-titania Coatings by Impedance Spectroscopy. J. Eur. Ceram. Soc. 2000, 20, 127–132. [Google Scholar] [CrossRef]
- Ctibor, P.; Pala, Z.; Sedláček, J.; Štengl, V.; Píš, I.; Zahoranová, T.; Nehasil, V. Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior. J. Therm. Spray Technol. 2012, 21, 425–434. [Google Scholar] [CrossRef]
- Gardon, M.; Dosta, S.; Guilemany, J.M.; Kourasi, M.; Mellor, B.; Wills, R. Improved, High Conductivity Titanium Suboxide Coated Electrodes Obtained by Atmospheric Plasma Spray. J. Power Sources 2013, 238, 430–434. [Google Scholar] [CrossRef]
- Tomaszek, R.; Znamirowski, Z.; Pawlowski, L.; Wojnakowski, A. Temperature Behavior of Titania Field Emitters Realized by Suspension Plasma Spray. Surf. Coat. Technol. 2006, 201, 2099–2102. [Google Scholar] [CrossRef]
- Tomaszek, R.; Znamirowski, Z.; Pawlowski, L.; Zdanowski, J. Effect of Conditioning on Field Emission of Suspension Plasma Sprayed TiO2 Coatings. Vacuum 2007, 81, 1278–1282. [Google Scholar] [CrossRef]
- Znamirowski, Z.; Ladaczek, M. Lighting Segment with Field Electron Titania Cathode Made Using Suspension Plasma Spraying. Surf. Coat. Technol. 2008, 202, 4449–4452. [Google Scholar] [CrossRef]
- Berger, L.-M. Titanium Oxide—New Opportunities for an Established Coating Material. In Proceedings of the International Thermal Spray Conference 2003, Osaka, Japan, 10–12 May 2004; DVS Verlag: Dusseldorf, Germany, 2003. [Google Scholar]
- Gardos, M.N. Magnéli Phases of Anion-deficient Rutile as Lubricious Oxides. Part I. Tribological Behavior of Single-crystal and Polycrystalline Rutile (TinO2n−1). Tribol. Lett. 2000, 8, 6665–6678. [Google Scholar]
- Andersson, S.; Collén, B.; Kuylenstierna, U.; Magnéli, A. Phase Analysis Studies on the Titanium-Oxygen Systém. Acta Chem. Scand. 1957, 11, 1641–1652. [Google Scholar] [CrossRef]
- Mauer, G.; Gildersleeve, E.J. Using Optical Emission Spectroscopy in Atmospheric Conditions to Track the Inflight Reduction of Plasma Sprayed TiO2−x Feedstock for Thermoelectric Applications. Sci. Rep. 2024, 14, 554–569. [Google Scholar] [CrossRef]
- Ohmori, A.; Park, K.C.; Inuzuka, M.; Arata, Y.; Inoue, K.; Iwamoto, N. Electrical Conductivity of Plasma-Sprayed Titanium Oxide (Rutile) Coatings. Thin Solid Films 1991, 201, 1–8. [Google Scholar] [CrossRef]
- Gardon, M.; Guilemany, J.M. A Review on Fabrication, Sensing Mechanisms and Performance of Metal Oxide Gas Sensors. J. Mater. Sci. 2013, 24, 1410–1420. [Google Scholar] [CrossRef]
- Dervos, C.T.; Thirios, E.; Novacovich, J.; Vassiliou, P.; Skafidas, P. Permittivity Properties of Thermally Treated TiO2. Mater. Lett. 2004, 58, 1502–1507. [Google Scholar] [CrossRef]
- Lee, C.; Choi, H.; Lee, C.; Kim, H. Photocatalytic Properties of Nano-structured TiO2 Plasma Sprayed Coating. Surf. Coat. Technol. 2003, 173, 192–200. [Google Scholar] [CrossRef]
- Ctibor, P.; Sedlacek, J.; Pala, Z. Dielectric and Electrochemical Properties Through-thickness Mapping on Extremely Thick Plasma Sprayed TiO2. Ceram. Int. 2016, 42, 7183–7191. [Google Scholar] [CrossRef]
- Agrawal, A.; Cizeron, J.; Colvin, V.L. In-Situ High Temperature TEM Observations of the Formation of Nanocrystalline TiC from Nanocrystalline Anatase (TiO2). Microsc. Microanal. 1998, 4, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Ctibor, P.; Hrabovský, M. Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Particle Parameters in the Flight and Character of Sprayed Coating. J. Europ. Ceram. Soc. 2010, 30, 3131–3136. [Google Scholar] [CrossRef]
- Ctibor, P.; Seshadri, R.C.; Henych, J.; Nehasil, V.; Pala, Z.; Kotlan, J. Photocatalytic and Electrochemical Properties of Single-layer and Multi-layer Sub-stoichiometric Titanium Oxide Coatings Prepared by Atmospheric Plasma Spraying. J. Adv. Ceram. 2016, 5, 126–136. [Google Scholar] [CrossRef]
- Kaur, R.; Kumari, A.; Satapathy, B.R.; Gupta, A.; Kumar, S.; Chakraverty, S. Effect of Light and Electrostatic Gate at Oxide Interface LaFeO3–SrTiO3 at Room Temperature. Adv. Phys. Res. 2023, 2, 2200087. [Google Scholar] [CrossRef]
- Zhu, M.; Chikyow, T.; Ahmet, P.; Naruke, T.; Murakami, M.; Matsumoto, Y.; Koinuma, H. A High-resolution Transmission Electron Microscopy Investigation of the Microstructure of TiO2 Anatase Film Deposited on LaAlO3 and SrTiO3 Substrates by Laser Ablation. Thin Solid Film. 2003, 441, 140–144. [Google Scholar] [CrossRef]
- Matweb. Available online: www.matweb.com (accessed on 15 January 2024).
- Ismael, M.; Wark, M. Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Catalysts 2019, 9, 342. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tabuchi, M.; Kageyama, H. Preparation of Dense BaTiO3 Ceramics with Submicrometer Grains by Spark Plasma Sintering. J. Am. Ceram. Soc. 1999, 82, 939–943. [Google Scholar] [CrossRef]
- Mikkenie, R. Materials Development for Commercial Multilayer Ceramic Capacitors. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2011. [Google Scholar]
- Masingboon, C.; Eknapakul, T.; Suwanwong, S.; Buaphet, P.; Nakajima, H.; Mo, S.-K.; Thongbai, P.; King, P.D.C.; Maensiri, S.; Meevasana, W. Anomalous Change in Dielectric Constant of CaCu3Ti4O12 Under Violet-to-Ultraviolet Irradiation. Appl. Phys. Lett. 2013, 102, 202903. [Google Scholar] [CrossRef]
- Bertrand, G.; Berger-Keller, N.; Meunier, C.; Coddet, C. Evaluation of Metastable Phase and Microhardness on Plasma Sprayed Titania Coatings. Surf. Coat. Technol. 2006, 200, 5013–5019. [Google Scholar] [CrossRef]
- Cizek, J.; Dlouhy, I.; Siska, F.; Khor, K.A. Modification of Plasma-sprayed TiO2 Coatings Characteristics via Controlling the In-flight Temperature and Velocity of the Powder Particles. J. Therm. Spray Technol. 2014, 23, 1339–1349. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Feeding distance FD [mm] | 120 |
Spray distance SD [mm] | 400 |
Feeding nozzle diameter [mm] | 3 |
Torch power [kW] | 150 |
Sample | Porosity [%] | ED [µm] | Pores Per mm2 | CIRmin |
---|---|---|---|---|
n-TiO2 * | 8.53 ± 1.93 | 13.55 ± 1.17 | 171 ± 68 | 0.095 ± 0.026 |
TiO2 ** | 4.60 ± 0.90 | 9.00 ± 0.50 | 389 ± 57 | 0.030 ± 0.010 |
TiO2 *** | 3.33 ± 0.55 | 5.45 ± 0.49 | 363 ± 56 | 0.105 ± 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ctibor, P.; Straka, L. Photoconductive TiO2 Dielectrics Prepared by Plasma Spraying. Appl. Sci. 2024, 14, 1714. https://doi.org/10.3390/app14051714
Ctibor P, Straka L. Photoconductive TiO2 Dielectrics Prepared by Plasma Spraying. Applied Sciences. 2024; 14(5):1714. https://doi.org/10.3390/app14051714
Chicago/Turabian StyleCtibor, Pavel, and Libor Straka. 2024. "Photoconductive TiO2 Dielectrics Prepared by Plasma Spraying" Applied Sciences 14, no. 5: 1714. https://doi.org/10.3390/app14051714
APA StyleCtibor, P., & Straka, L. (2024). Photoconductive TiO2 Dielectrics Prepared by Plasma Spraying. Applied Sciences, 14(5), 1714. https://doi.org/10.3390/app14051714