Effect of a Crystalline Admixture on the Permeability Properties of Concrete and the Resistance to Corrosion of Embedded Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concretes Tested
2.2. Compressive Strength
2.3. Density, Porosity, and Water Absorption
2.4. Electrical Resistivity
2.5. Water Absorption Karsten Test
2.6. Unidirectional Chloride Diffusion Test
2.7. Air Permeability Torrent Test
2.8. Rebar Corrosion Resistance Accelerated Test
3. Results and Discussion
3.1. Compressive Strength
3.2. Density, Porosity, and Water Absorption
3.3. Electrical Resistivity
3.4. Water Absorption Karsten Test
3.5. Unidirectional Chloride Diffusion Test
3.6. Air Permeability Torrent Test
3.7. Rebar Corrosion Resistance Accelerated Test
4. Conclusions
- The incorporation of the admixture to the concrete allows the amount of mixing water to be slightly reduced for the same consistency. This makes it possible to improve the durability properties of the material or reduce the amount of plasticizing additive to be used in mixing (for the same consistency).
- The incorporation of the admixture is not detrimental regarding the compressive strength of Portland cement concrete.
- The admixture allows the generation of a more closed porous structure, and therefore less permeable, in Portland cement concrete. The reduction in porosity and water absorption is quantified at approximately 3% compared to a reference concrete.
- Portland cement concrete incorporating the admixture shows electrical resistivity values (in water saturated state of the pore network) that are approximately 10% higher than those of the reference concrete. This reflects a greater capacity to reduce porosity and permeability, especially in conditions close to water saturation of the pore network.
- Portland cement concrete incorporating the admixture has shown a slight reduction in the water absorption coefficient (water absorption test by Karsten’s method) in comparison to the reference concrete. This reduction is quantified at a value of 23% in the experimental conditions of this work.
- The unidirectional chloride diffusion tests have not revealed differences in behavior, in terms of resistance to chloride penetration by diffusion, between a concrete incorporating the admixture and a reference concrete.
- The incorporation of the admixture to Portland cement concrete has led to a considerable reduction in the air permeability coefficient (Torrent test) compared to a reference concrete. This reduction is quantified between 36% and 55%.
- The incorporation of the admixture can reduce the scatter in the corrosion initiation times of the steel reinforcements and could have an effect of delaying the onset of their corrosion, with respect to a reference concrete. Under the test conditions of the present research, the delay in corrosion onset times could translate into an increase from about 110 days to about 170 days. However, more experiments would be necessary, with a greater number of specimens and a longer duration of the tests, to be able to carefully evaluate the effect of the incorporation of the admixture on the corrosion processes of steel reinforcement in concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedeferri, P.; Bertolini, L. La Durabilità del Calcestruzzo Armato (The Durability of Reinforced Concrete); Mc Graw Hill: Milan, Italy, 2000. (In Italian) [Google Scholar]
- Kropp, J.; Hilsdorf, H.K.; Grube, H.; Andrade, C.; Nilsson, L.O. Transport mechanisms and definitions. In Performance Criteria for Concrete Durability; Kropp, J., Hilsdorf, H.K., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 4–14. [Google Scholar]
- ACI Committee 222R-96; Corrosion of Metals in Concrete. American Concrete Institute (ACI): Farmington Hills, MI, USA, 1996.
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Moore, A.; Beushausen, H.; Otieno, M.; Ndawula, J.; Alexander, M. Oxygen Availability and Corrosion Propagation in RC Structures in the Marine Environment—Inferences from Field and Laboratory Studies. Corros. Mater. Degrad. 2022, 3, 363–375. [Google Scholar] [CrossRef]
- ACI Committee 212.3R; Report on Chemical Admixtures for Concrete. American Concrete Institute (ACI): Farmington Hills, MI, USA, 2015.
- de Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Reiterman, P.; Pazderka, J. Crystalline Coating and Its Influence on the Water Transport in Concrete. Adv. Civ. Eng. 2016, 2016, 2513514. [Google Scholar] [CrossRef]
- Jahandari, S.; Tao, Z.; Alim, M.; Li, W. Integral waterproof concrete: A comprehensive review. J. Build. Eng. 2023, 78, 107718. [Google Scholar] [CrossRef]
- Oliveira, A.; Gomes, O.; Ferrara, L.; Fairbairn, E.; Filho, R. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. J. Build. Eng. 2021, 41, 102400. [Google Scholar] [CrossRef]
- García Calvo, J.L.; Sánchez Moreno, M.; Carballosa, P.; Pedrosa, F.; Tavares, F. Improvement of the Concrete Permeability by Using Hydrophilic Blended Additive. Materials 2019, 12, 2384. [Google Scholar] [CrossRef] [PubMed]
- Hassani, M.; Vessalas, K.; Sirivivatnanon, V.; Baweja, D. Influence of Permeability-Reducing Admixtures on Water Penetration in Concrete. ACI Mater. J. 2017, 114, 911–922. [Google Scholar]
- Zheng, K.; Yang, X.; Chen, R.; Xu, L. Application of a capillary crystalline material to enhance cement grout for sealing tunnel leakage. Constr. Build. Mater. 2019, 214, 497–505. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R.; Biparva, A. Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement. Cem. Concr. Compos. 2019, 99, 17–31. [Google Scholar] [CrossRef]
- Elsalamawy, M.; Mohamed, A.; Abosen, A. Performance of crystalline forming additive materials in concrete. Constr. Build. Mater. 2020, 30, 117056. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R.; Azarsa, P.; Biparva, A. Durability and Self-Sealing Examination of Concretes Modified with Crystalline Waterproofing Admixtures. Materials 2021, 14, 6508. [Google Scholar] [CrossRef] [PubMed]
- Dao, V.; Dux, P.; Morris, P.; Carse, A. Performance of Permeability-Reducing Admixtures in Marine Concrete Structures. ACI Mater. J. 2010, 107, 291–296. [Google Scholar]
- ASTM-C1202-97; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM: West Conshohocken, PA, USA, 1997.
- Sideris, K.; Mingou, E.; Solomou, C. Investigation of the Mechanical Properties and Durability of Concretes Produced with Microsilica and Crystalline Admixtures. In Proceedings of the International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-Based Materials and Concrete Structures—SynerCrete 2023, Milos Island, Greece, 15–16 June 2023; RILEM Bookseries; Jȩdrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D., Eds.; Springer: Cham, Switzerland, 2023; Volume 44, pp. 876–887. [Google Scholar] [CrossRef]
- NT Build 492; Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. Nordtest: Espoo, Finland, 1999.
- EN 206-1; Concrete—Specification, Performance, Production and Compliance. European Committee of Normalization: Brussels, Belgium, 2016.
- Hendrickx, R. Using the Karsten tube to estimate water transport parameters of porous building materials. Mater. Struct. 2013, 46, 1309–1320. [Google Scholar] [CrossRef]
- Torrent, R.J. A two chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater. Struct. 1992, 25, 358–365. [Google Scholar] [CrossRef]
- Beltrán-Cobos, R.; Tavares-Pinto, F.; Sánchez-Moreno, M. Analysis of the Influence of Crystalline Admixtures at Early Age Performance of Cement-Based Mortar by Electrical Resistance Monitoring. Materials 2021, 14, 5705. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, C.; Li, D.; Han, N.; Xing, F. A self-healing cementitious composite with mineral admixtures and built-in carbonate. Cem. Concr. Compos. 2018, 92, 216–229. [Google Scholar] [CrossRef]
- Ministerio de Fomento. Instrucción Española de Recepción de Cementos (RC-16); Ministerio de Fomento: Madrid, Spain, 2016; (Spanish Code for Cements). [Google Scholar]
- UNE-EN 12350-2:2020; Ensayos de Hormigón Fresco. Parte 2: Ensayo de Asentamiento (Fresh Concrete Tests. Part 2: Setting Test, Spanish Standard). AENOR: Madrid, Spain, 2020.
- UNE-EN 12390-3; Ensayos de Hormigón Endurecido. Parte 3: Determinación de la Resistencia a Compresión de Probetas (Hardened Concrete Tests. Part 3: Compressive Strenght Test, Spanish Standard). AENOR: Madrid, Spain, 2003.
- ASTM-C642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM: West Conshohocken, PA, USA, 2021.
- Safiuddin, M.; Hearn, N. Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete. Cem. Concr. Res. 2005, 35, 1008–1013. [Google Scholar] [CrossRef]
- Climent, M.A.; de Vera, G.; López, J.; Viqueira, E.; Andrade, C. A test method for measuring chloride diffusion coefficients through non-saturated concrete. Part I: The instantaneous plane source diffusion case. Cem. Concr. Res. 2002, 32, 1113–1123. [Google Scholar] [CrossRef]
- Medeiros, M.; Helene, P. Efficacy of Surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Mater. Struct. 2008, 41, 59–71. [Google Scholar] [CrossRef]
- EN 12390-11:2015; Testing Hardened Concrete. Determination of the Chloride Resistance of Concrete, Unidirectional Diffusion. European Committee of Normalization: Brussels, Belgium, 2014.
- Vennesland, Ø.; Climent, M.A.; Andrade, C. Recommendation of RILEM TC 178-TMC: Testing and Modelling Chloride Penetration in Concrete. Methods for obtaining dust samples by means of grinding concrete in order to determine the chloride concentration profile. Mater. Struct. 2013, 46, 337–344. [Google Scholar]
- Climent, M.; Viqueira, E.; de Vera, G.; López-Atalaya, M. Analysis of acid-soluble chloride in cement, mortar, and concrete by potentiometric titration without filtration steps. Cem. Concr. Res. 1999, 29, 893–898. [Google Scholar] [CrossRef]
- Climent, M.; de Vera, G.; Viqueira, E.; López-Atalaya, M. Generalization of the possibility of eliminating the filtration step in the determination of acid-soluble chloride content in cement and concrete by potentiometric titration. Cem. Concr. Res. 2004, 34, 2291–2295. [Google Scholar] [CrossRef]
- Romer, M. Recommendation of RILEM TC 189-NEC: Comparative test—Part I—Comparative test of “penetrability” methods. Mater. Struct. 2005, 38, 895–906. [Google Scholar] [CrossRef]
- Kollek, J. The determination of the permeability of concrete to oxygen by the Cembureau method—A recommendation. Mater. Struct. 1989, 22, 225–230. [Google Scholar] [CrossRef]
- Polder, R.; Andrade, C.; Elsener, B.; Vennesland, Ø.; Gulikers, J.; Weidert, R.; Raupach, M. Recommendation of RILEM TC 154-EMC: Test methods for on-site measurement of resistivity of concrete. Mater. Struct. 2000, 33, 603–611. [Google Scholar] [CrossRef]
- Ministerio de Transportes, Movilidad y Agenda Urbana. Instrucción Española de Hormigón Estructural (EHE-21); Ministerio de Transportes, Movilidad y Agenda Urbana: Madrid, Spain, 2021; (Spanish Code for Structural Concrete). [Google Scholar]
- Azarsa, P.; Gupta, R. Electrical resistivity of concrete for durability evaluation. A review. Adv. Mater. Sci. Eng. 2017, 2017, 8453095. [Google Scholar] [CrossRef]
- Andrade, C.; D’Andrea, R. La resistividad eléctrica como parámetro de control del hormigón y de su durabilidad (The electrical resistivity as a control parameter of concrete and its durability). Rev. Alconpat 2011, 1, 90–98. (In Spanish) [Google Scholar] [CrossRef]
- ASTM-C876-22B; Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM: West Conshohocken, PA, USA, 2022.
- Andrade, C.; Alonso, C.; González, J. An Initial Effort to Use the Corrosion Rate Measurement for Estimating Rebar Durability. Corrosion Rates of Steel in Concrete; American Society for Testing and Materials ASTM STP 1065: Philadelphia, PA, USA, 1990; pp. 29–37. [Google Scholar]
- Andrade, C.; Alonso, C.; Gulikers, J.; Polder, R.; Cigna, R.; Vennesland, Ø.; Salta, M. Test methods for on-site reinforcement corrosion rate measurement of steel reinforcement in concrete by means of the Polarization Resistance method. RILEM Recommendation of TC-154 Electrochemical Techniques for measuring metallic corrosion. Mater. Struct. 2004, 37, 623–643. [Google Scholar] [CrossRef]
Parameter | Concrete C | Concrete C* |
---|---|---|
CEM II 42.5 R (kg/m3) | 350.0 | 350.0 |
Sand (kg/m3) | 630.0 | 630.0 |
Aggregate 4/6 (kg/m3) | 465.5 | 465.5 |
Aggregate 6/12 (kg/m3) | 679.0 | 679.0 |
Deionized water (kg/m3) | 210.0 | 199.5 |
Water/cement ratio | 0.60 | 0.57 |
CCADM admixture (% ref. cement mass) | – | 0.29 |
Abrams cone setting (cm) | 4.0 | 3.5 |
Day | Action |
---|---|
1 | Spread 65 mL of 0.5 M NaCl solution on the tested concrete surface inside the pond |
2 | Allow the specimen to dry 1 |
3 | Moisten the specimen during 3 h by ponding with 300 mL of tap water. Empty the pond and take the electrochemical measurements: , and |
4 | Allow the specimen to dry 1 |
Parameter | Concrete C | Concrete C* |
---|---|---|
Mean value (MPa) | 30.00 | 31.71 |
Standard Deviation (MPa) | 0.17 | 0.33 |
Parameter | Concrete C | Concrete C* | ||
---|---|---|---|---|
Mean Value | Standard Deviation | Mean Value | Standard Deviation | |
Absorption after immersion and saturation (%) | 8.33 | 0.26 | 8.05 | 0.33 |
Dry bulk density (kg/m3) | 2200 | 10 | 2210 | 20 |
Bulk density after immersion and saturation (kg/m3) | 2380 | 10 | 2390 | 10 |
Apparent density (kg/m3) | 2690 | 0 | 2700 | 0 |
Permeable pore volume (%) | 18.31 | 0.46 | 17.83 | 0.61 |
Time of Testing (Days) 1 | Parameter | Concrete C | Concrete C* |
---|---|---|---|
14 | 7.0 | 7.3 | |
14 | Standard deviation of | 3.1 | 3.4 |
105 | 7.9 | 6.1 | |
105 | Standard deviation of | 2.6 | 3.3 |
Parameter | Concrete C | Concrete C* |
---|---|---|
mean value (10−12 m2/s) | 23.3 | 22.2 |
standard deviation (10−12 m2/s) | 6.4 | 1.6 |
mean value (%) | 0.547 | 0.516 |
standard deviation (%) | 0.034 | 0.031 |
Quality | kT (10−16 m2) |
---|---|
1—Very good | <0.01 |
2—Good | 0.01–0.1 |
3—Normal | 0.1–1 |
4—Poor | 1–10 |
5—Very poor | >10 |
(mV vs. (Sat)) | Corrosion Probability |
---|---|
>−200 | Low risk of corrosion (10%) |
Intermediate | |
High risk of corrosion (90%) | |
<−500 | Severe corrosion |
(A/cm2) | Corrosion Rate (A/year) | Corrosion State |
---|---|---|
<0.1 | <1.16 | Negligible |
0.1–0.5 | 1.16–5.8 | Low–Moderate |
0.5-1 | 5.8–11.6 | Intermediate |
>1 | >11.6 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antón, C.; Gurdián, H.; de Vera, G.; Climent, M.-Á. Effect of a Crystalline Admixture on the Permeability Properties of Concrete and the Resistance to Corrosion of Embedded Steel. Appl. Sci. 2024, 14, 1731. https://doi.org/10.3390/app14051731
Antón C, Gurdián H, de Vera G, Climent M-Á. Effect of a Crystalline Admixture on the Permeability Properties of Concrete and the Resistance to Corrosion of Embedded Steel. Applied Sciences. 2024; 14(5):1731. https://doi.org/10.3390/app14051731
Chicago/Turabian StyleAntón, Carlos, Hebé Gurdián, Guillem de Vera, and Miguel-Ángel Climent. 2024. "Effect of a Crystalline Admixture on the Permeability Properties of Concrete and the Resistance to Corrosion of Embedded Steel" Applied Sciences 14, no. 5: 1731. https://doi.org/10.3390/app14051731
APA StyleAntón, C., Gurdián, H., de Vera, G., & Climent, M. -Á. (2024). Effect of a Crystalline Admixture on the Permeability Properties of Concrete and the Resistance to Corrosion of Embedded Steel. Applied Sciences, 14(5), 1731. https://doi.org/10.3390/app14051731