Antimicrobial Peptide Screening from Microbial Genomes in Sludge Based on Deep Learning
Abstract
:1. Introduction
- (1)
- In response to the demand for AMP screening, this study innovatively constructed the ALSTM model based on the LSTM model, incorporating an attention mechanism to emphasize key gene relationships for the effective screening of peptide segments with antimicrobial activity.
- (2)
- This paper introduces a combined screening deep network designed to consider both long- and short-term dependency relationships in genomic data. It utilizes an attention mechanism to emphasize contextual relationships of key features, accurately screening genes and peptide segments with potential antimicrobial activity.
- (3)
- In the validation experiments, this paper introduces molecular docking and dynamic simulations to simulate the interaction between the screened peptide segments and potential antibiotic target proteins. This allows for the study of the interaction between antimicrobial peptides and target proteins, thereby validating the effectiveness of the proposed antimicrobial peptide screening model.
2. Materials and Methods
2.1. Dataset for Training the Network
2.2. ALSTM
2.3. Combined Antimicrobial Peptide Screening Deep Network
3. Experiments
3.1. Experimental Process
3.2. Training of the Combined Deep Network and Screening Results
3.3. Model Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Tarín-Pelló, A.; Suay-García, B.; Pérez-Gracia, M.-T. Antibiotic resistant bacteria: Current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev. Anti Infect. Ther. 2022, 20, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Kardani, K.; Bolhassani, A. Antimicrobial/anticancer peptides: Bioactive molecules and therapeutic agents. Immunotherapy 2021, 13, 669–684. [Google Scholar] [CrossRef]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur. J. Med. Chem. 2023, 265, 116072. [Google Scholar] [CrossRef] [PubMed]
- Lertampaiporn, S.; Vorapreeda, T.; Hongsthong, A.; Thammarongtham, C. Ensemble-AMPPred: Robust AMP Prediction and Recog-nition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs. Genes 2021, 12, 137. [Google Scholar] [CrossRef]
- Wani, M.A.; Garg, P.; Roy, K.K. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides. Med. Biol. Eng. Comput. 2021, 59, 2397–2408. [Google Scholar] [CrossRef]
- Xu, J.; Li, F.; Leier, A.; Xiang, D.; Shen, H.-H.; Lago, T.T.M.; Li, J.; Yu, D.-J.; Song, J. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Briefings Bioinform. 2021, 22, bbab083. [Google Scholar] [CrossRef]
- Yaseen, A.; Gull, S.; Akhtar, N.; Amin, I.; Minhas, F. HemoNet: Predicting hemolytic activity of peptides with integrated feature learning. J. Bioinform. Comput. Biol. 2021, 19, 2150021. [Google Scholar] [CrossRef]
- Bhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep. 2018, 8, 1697. [Google Scholar] [CrossRef]
- Li, C.; Warren, R.L.; Birol, I. Models and data of AMPlify: A deep learning tool for antimicrobial peptide prediction. BMC Res. Notes 2023, 16, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.; Hsu, W.-L.; Su, E.C.-Y. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composi-tion-based features. BMC Bioinform. 2021, 22, 389. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, J.; Zhao, H.; Li, H.; Wang, J. CL-ACP: A parallel combination of CNN and LSTM anticancer peptide recognition model. BMC Bioinform. 2021, 22, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Dee, W. LMPred: Predicting antimicrobial peptides using pre-trained language models and deep learning. Bioinform. Adv. 2022, 2, vbac021. [Google Scholar] [CrossRef] [PubMed]
- Hussain, W. sAMP-PFPDeep: Improving accuracy of short antimicrobial peptides prediction using three different sequence encodings and deep neural networks. Brief. Bioinform. 2021, 23, bbab487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, J.; Zhao, L.; Zeng, X.; Liu, X. A novel antibacterial peptide recognition algorithm based on BERT. Brief. Bioinform. 2021, 22, bbab200. [Google Scholar] [CrossRef] [PubMed]
- Distasio, R.A., Jr.; Von Lilienfeld, O.A.; Tkatchenko, A. Collective many-body van der Waals interactions in molecular systems. Proc. Natl. Acad. Sci. USA 2012, 109, 14791–14795. [Google Scholar] [CrossRef]
- Kumar, S.; Nussinov, R. Salt bridge stability in monomeric proteins. J. Mol. Biol. 1999, 293, 1241–1255. [Google Scholar] [CrossRef]
- Meuzelaar, H.; Vreede, J.; Woutersen, S. Influence of Glu/Arg, Asp/Arg, and Glu/Lys salt bridges on α-helical stability and folding kinetics. Biophys. J. 2016, 110, 2328–2341. [Google Scholar] [CrossRef]
- Sowole, M.A.; Konermann, L. Effects of Protein–Ligand Interactions on Hydrogen/Deuterium Exchange Kinetics: Canonical and Noncanonical Scenarios. Anal. Chem. 2014, 86, 6715–6722. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, D. Hydrogen Bonding Penalty upon Ligand Binding. PLoS ONE 2011, 6, e19923. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Kumar, S.; Tsai, C.J.; Wolfson, H.; Sinha, N.; Nussinov, R. Protein–Ligand Interactions: Induced Fit. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zhou, L.; Lian, K.; Wang, M.; Jing, X.; Zhang, Y.; Cao, J. The antimicrobial effect of a novel peptide LL-1 on Escherichia coli by increasing membrane permeability. BMC Microbiol. 2022, 22, 220. [Google Scholar] [CrossRef] [PubMed]
- Condic-Jurkic, K.; Subramanian, N.; Mark, A.E.; O’Mara, M.L. The reliability of molecular dynamics simulations of the multidrug transporter P-glycoprotein in a membrane environment. PLoS ONE 2018, 13, e0191882. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Vaisman, I.I.; Van Hoek, M.L. Machine learning prediction of antimicrobial peptides. In Computational Peptide Science: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–37. [Google Scholar]
- Plisson, F.; Ramírez-Sánchez, O.; Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic peptides. Sci. Rep. 2020, 10, 16581. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-B.; Wang, Z.-Y.; Kong, J.-L.; Bai, Y.-T.; Su, T.-L.; Ma, H.-J.; Chakrabarti, P. Deep Spatio-Temporal Graph Network with Self-Optimization for Air Quality Prediction. Entropy 2023, 25, 247. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Z.; Xia, B.; Zhang, Y.; Liu, X.; Yu, Y.; Tang, N.; Tong, X.; Wang, M.; Ye, X.; et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 2022, 40, 921–931. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, C.; Pei, Y.; Liu, X.; Tian, Y. AMP-EBiLSTM: Employing novel deep learning strategies for the accurate prediction of anti-microbial peptides. Front. Genet. 2023, 14, 1232117. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Zhang, Y.; Gong, X. DeepLPI: A novel deep learning-based model for protein–ligand interaction prediction for drug repurposing. Sci. Rep. 2022, 12, 18200. [Google Scholar] [CrossRef]
- Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H.K.; Wong, K.H.; Siu, S.W. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Mol. Ther. Nucleic Acids 2020, 20, 882–894. [Google Scholar] [CrossRef]
- Aliye, M.; Dekebo, A.; Tesso, H.; Abdo, T.; Eswaramoorthy, R.; Melaku, Y. Molecular docking analysis and evaluation of the antibacterial and antioxidant activities of the constituents of Ocimum cufodontii. Sci. Rep. 2021, 11, 10101. [Google Scholar] [CrossRef]
- Amer, H.H.; Eldrehmy, E.H.; Abdel-Hafez, S.M.; Alghamdi, Y.S.; Hassan, M.Y.; Alotaibi, S.H. Antibacterial and molecular docking studies of newly synthesized nucleosides and Schiff bases derived from sulfadimidines. Sci. Rep. 2021, 11, 17953. [Google Scholar] [CrossRef]
- Zhao, X.; Kuipers, O.P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genom. 2016, 17, 882. [Google Scholar] [CrossRef]
- Martínez-Núñez, M.A.; López, V.E.L.Y. Nonribosomal peptides synthetases and their applications in industry. Sustain. Chem. Process. 2016, 4, 13. [Google Scholar] [CrossRef]
Dataset | Positive | Negative |
---|---|---|
Training set | 4370 | 5132 |
Test set | 2211 | 2543 |
Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
LSTM | 0.850 | 0.784 | 0.966 | 0.866 |
ALSTM | 0.952 | 0.992 | 0.912 | 0.950 |
Combined | 1 | 1 | 1 | 1 |
Prediction Sequence | Systematics |
---|---|
LLPRLLARRY | Clostridiales |
FRVPLAPYVLPPLLARC | Fervidobacterium |
GVREIHGLNPGGCLHTVRLVCRR | Caloramator sp. E03 |
IRTTLPPYVFPRLLARCW | Actinobacteria |
FRITPSPHVLPPLRGRVC | Peptostreptococcaceae |
FRITLTPHVLPRLLARS | Romboutsia |
FRLTFRTHVLPRPLGRC | Betaproteobacteria |
GLLHTRGIAGSGLRPLSKIPHCCRP | Gammaproteobacteria |
RLRRWPCKSCVKTPGSTREVPGKPAGWCAA | Thermosipho africanus TCF52B |
FRITLATYVLRRLLLPCS | Turicibacter sp. H121 |
FRSTLAPYGLPRLLGRC | Tepidanaerobacter acetatoxydans Re1 |
FRTTLAPHVLTRLLAPCW | Synergistaceae |
RLHPLCYRGCWHRVSRCLFCE | Acinetobacter |
GLHHSRGMAGSGLPPLSNIPHCSHP | Bradyrhizobiaceae |
FRTTLAPYVFPRLLHRS | Rubrobacter xylanophilus |
FRTTLAPYVLPRLLARCW | Nocardioides sp. CF8 |
GLLHSRGIAGSGLPPLSNIPHCSLP | Defluviicoccus vanus |
Model | Affinity (kcal/mol) | Dist From RMSD 1. b. | Best Mode RMSD u. b. |
---|---|---|---|
1 | −7.4 | 14.129 | 20.562 |
2 | −6.2 | 2.168 | 3.017 |
3 | −7.3 | 1.326 | 2.133 |
4 | −5.9 | 3.126 | 10.883 |
5 | −7.0 | 2.274 | 4.324 |
6 | −6.9 | 3.077 | 6.023 |
7 | −6.9 | 7.883 | 17.806 |
8 | −6.3 | 3.657 | 11.755 |
9 | −7.0 | 2.395 | 5.414 |
10 | −7.0 | 12.373 | 20.499 |
Methods | Major Contribution | Recall | AUC |
---|---|---|---|
Machine learning [28] | The synthesis yielded 216 peptides from a pool of 241 segments, revealing that 181 of them possessed antimicrobial activity. | 83.80% | × |
Deep-AmPEP30 [31] | A new method, Deep-AmPEP30, has been proposed for predicting short-chain (≤30 amino acids) antimicrobial peptides (AMPs). This approach combines the optimal feature set reduced by PseKRAAC amino acid composition and convolutional neural networks. The genome sequences of gut commensal yeast pseudohyphae were screened, leading to the discovery of a peptide comprising 20 amino acids. | × | 0.85 |
AMP-EBiLSTM [29] | A deep learning strategy named AMP-EBiLSTM has been proposed for the accurate prediction of antimicrobial peptides. In the realms of deep learning and ensemble learning, the authors effectively utilized binary profile features (BPF) and pseudo-amino acid composition (PSEAAC) to capture local sequences and extract amino acid information. | 92.39% | 0.97 |
DeepLPI [30] | With an AUROC of 0. 857 on the BindingDB dataset and an AUROC of 0. 925 on the Davis dataset, the authors introduced a novel deep learning-based model for predicting protein–ligand interactions. This model is particularly suitable for drug repurposing and is primarily composed of a one-dimensional convolutional neural network (1D CNN) based on ResNet and a bidirectional long short-term memory network (biLSTM). | × | 0.925 |
Deep learning | The application of the ALSTM model, which combines the LSTM model with an attention mechanism, successfully predicted and screened antimicrobial peptides, ensuring high accuracy. | 96.60% | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-X.; Jin, X.-B.; Xu, C.-M.; Ma, H.-J.; Wu, Q.; Liu, H.-S.; Li, Z.-M. Antimicrobial Peptide Screening from Microbial Genomes in Sludge Based on Deep Learning. Appl. Sci. 2024, 14, 1936. https://doi.org/10.3390/app14051936
Liu Y-X, Jin X-B, Xu C-M, Ma H-J, Wu Q, Liu H-S, Li Z-M. Antimicrobial Peptide Screening from Microbial Genomes in Sludge Based on Deep Learning. Applied Sciences. 2024; 14(5):1936. https://doi.org/10.3390/app14051936
Chicago/Turabian StyleLiu, Yin-Xuan, Xue-Bo Jin, Chun-Ming Xu, Hui-Jun Ma, Qi Wu, Hao-Si Liu, and Zi-Meng Li. 2024. "Antimicrobial Peptide Screening from Microbial Genomes in Sludge Based on Deep Learning" Applied Sciences 14, no. 5: 1936. https://doi.org/10.3390/app14051936
APA StyleLiu, Y. -X., Jin, X. -B., Xu, C. -M., Ma, H. -J., Wu, Q., Liu, H. -S., & Li, Z. -M. (2024). Antimicrobial Peptide Screening from Microbial Genomes in Sludge Based on Deep Learning. Applied Sciences, 14(5), 1936. https://doi.org/10.3390/app14051936