Investigation into Influences of Hydraulic Fracturing for Hard Rock Weakening in Underground Mines
Abstract
:1. Introduction
2. Numerical and In Situ Testing Programs
2.1. Numerical Simulation Methods
2.2. In Situ Testing Methods
3. Numerical Simulation Results
3.1. Different Fracturing Intervals
3.2. Different Water Injection Pressures
3.3. Different Borehole Spaces
3.4. Hydraulic Fracturing Parameters
4. In Situ Testing Results
4.1. Hydraulic Fracturing Effect Analysis
4.2. Roadway Displacement and Pressure Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Q.; Suorineni, F.T.; Oh, J. Strategies for Creating Prescribed Hydraulic Fractures in Cave Mining. Rock Mech. Rock Eng. 2017, 50, 967–993. [Google Scholar] [CrossRef]
- Vu, T.T. Solutions to prevent face spall and roof falling in fully mechanized longwall at underground mines, Vietnam. Min. Miner. Depos. 2022, 16, 127–134. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Z.; Wang, R. Fracture extension and coal breaking performance by high-pressure gas-liquid jet flow. J. China Univ. Min. Technol. 2020, 49, 1–12. [Google Scholar]
- Symanovych, H.; Odnovol, M.; Yakovenko, V.; Sachko, R.; Shaikhlislamova, I.; Reshetilova, T.; Stadnichuk, M. Assessing the geomechanical state of the main working network state in the case of undermining in the conditions of weak rocks. Min. Miner. Depos. 2023, 17, 91–98. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Y.; Cao, S. Cavability control by hydraulic fracturing for top coal caving in hard thick coal seams. Int. J. Rock Mech. Min. 2015, 74, 45–57. [Google Scholar] [CrossRef]
- Wu, S.; Hao, W.; Yao, Y.; Li, D. Investigation into durability degradation and fracture of cable bolts through laboratorial tests and hydrogeochemical modelling in underground conditions. Tunn. Undergr. Space Technol. 2023, 138, 105198. [Google Scholar] [CrossRef]
- Yang, W.; Lin, M.; Walton, G.; Lin, B.; Sinha, S.; Lu, C.; Li, G. Blasting-enhanced water injection for coal and gas out-burst control. Process Saf. Environ. Prot. 2020, 140, 233–243. [Google Scholar] [CrossRef]
- Abe, A.; Kim, T.W.; Horne, R.N. Laboratory hydraulic stimulation experiments to investigate the interaction between newly formed and preexisting fractures. Int. J. Rock Mech. Min. 2021, 141, 104665. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, X.; Yu, B.; Jia, J. Weakening effects of hydraulic fracture in hard roof under the influence of stress arch. Int. J. Min. Sci. Technol. 2018, 28, 951–958. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Bai, J.; Wu, W.; Wu, B.; Wang, G. Fixed-length roof cutting with vertical hydraulic fracture based on the stress shadow effect: A case study. Int. J. Min. Sci. Technol. 2021, 32, 295–308. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Z.R.; Chen, J.H.; Yao, Y.; Li, D.Q. Characterisation of stress corrosion durability and time-dependent performance of cable bolts in underground mine environments. Eng. Fail. Anslysis 2023, 150, 107292. [Google Scholar] [CrossRef]
- Duan, M.; Jiang, C.; Gan, Q.; Li, M.; Peng, K.; Zhang, W. Experimental investigation on the permeability, acoustic emission and energy dissipation of coal under tiered cyclic unloading. J. Nat. Gas Sci. Eng. 2020, 73, 103054. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Lu, Z.; Wu, S. Investigation into Mining Economic Evaluation Approaches Based on the Rosenblueth Point Estimate Method. Appl. Sci. 2023, 13, 9011. [Google Scholar] [CrossRef]
- Cheon, D.-S.; Lee, T.J. Theoretical Background and Design of Hydraulic Fracturing in Oil and Gas Production. Tunn. Undergr. Space 2013, 23, 538–546. [Google Scholar] [CrossRef]
- Hubbert, M.K.; Willis, D.G. Mechanics of hydraulic fracturing. Trans. AIME 1957, 210, 153–168. [Google Scholar] [CrossRef]
- Griffith, A. The phenomena of rupture and flows in solids. Philos. Trans. R. Soc. Lond. 1921, 221, 163–198. [Google Scholar]
- Palaniswamy, K.; Knauss, W.G. On the Problem of Crack Extension in Brittle Solids under General Loading. Mech. Today 1978, 4, 87–148. [Google Scholar]
- Fan, J.; Dou, L.; He, H.; Du, T.; Zhang, S.; Gui, B.; Sun, X. Directional hydraulic fracturing to control hard-roof rockburst in coal mines. Int. J. Min. Sci. Technol. 2012, 22, 177–181. [Google Scholar] [CrossRef]
- Kanevskaya, R.D.; Diyashev, I.R.; Nekipelov, Y.K. Application of hydraulic fracturing for oil production stimulation and oil recovery increase. Neft. Khozyaistvo 2002, 1, 96–100. [Google Scholar]
- Lu, G.; Gordeliy, E.; Prioul, R.; Aidagulov, G.; Bunger, A. Modeling simultaneous initiation and propagation of multiple hydraulic fractures under subcritical conditions. Comput. Geotech. 2018, 104, 196–206. [Google Scholar] [CrossRef]
- Xing, Y.; Huang, B.; Li, B.; Liu, J.; Cai, Q.; Hou, M.; Liu, H. Investigations on the Directional Propagation of Hydraulic Fracture in Hard Roof of Mine: Utilizing a Set of Fractures and the Stress Disturbance of Hydraulic Fracture. Lithosphere 2021, 2021, 4328008. [Google Scholar] [CrossRef]
- Zheng, K.; Zhang, T.; Zhao, J.; Liu, Y.; Yu, F. Evolution and management of thick-hard roof using goaf-based multistage hydraulic fracturing technology-A case study in western Chinese coal field. Arab. J. Geosci. 2021, 14, 876. [Google Scholar]
- Zoveidavianpoor, M.; Samsuri, A.; Shadizadeh, S.R. Well Stimulation in Carbonate Reservoirs: The Needs and Superiority of Hydraulic Fracturing. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 92–98. [Google Scholar] [CrossRef]
- Deng, J.Q.; Lin, C.; Yang, Q.; Liu, Y.R.; Tao, Z.F.; Duan, H.F. Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling. Comput. Geotech. 2016, 75, 28–47. [Google Scholar] [CrossRef]
- Ham, S.-M.; Kwon, T.-H. Characteristics of steady-state propagation of hydraulic fractures in ductile elastic and two-dimensionally confined plate media. Int. J. Rock Mech. Min. 2019, 114, 164–174. [Google Scholar] [CrossRef]
- Ham, S.-M.; Kwon, T.-H. Video data of hydraulic fracture propagation in two-dimensionally confined gelatin plates. Data Brief 2019, 25, 104096. [Google Scholar] [CrossRef]
- He, Q.; Suorineni, F.; Oh, J. Modeling interaction between natural fractures and hydraulic fractures in block cave mining. In Proceedings of the 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 28 June–1 July 2015. [Google Scholar]
Parameters | Density (g·cm−3) | Tensile Strength (MPa) | Uniaxial Compressive Strength (MPa) | Elastic Modulus (GPa) | Cohesion (MPa) | Internal Friction Angle (°) |
---|---|---|---|---|---|---|
Sandstone | 2.83 | 7.8 | 71.3 | 46.4 | 9.1 | 38 |
Parameters | Designed Values |
---|---|
Fracturing intervals | 2.2 m |
Water injection pressures | 30 MPa |
Borehole spacing | 7 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Wu, S.; He, Q. Investigation into Influences of Hydraulic Fracturing for Hard Rock Weakening in Underground Mines. Appl. Sci. 2024, 14, 1948. https://doi.org/10.3390/app14051948
Cao X, Wu S, He Q. Investigation into Influences of Hydraulic Fracturing for Hard Rock Weakening in Underground Mines. Applied Sciences. 2024; 14(5):1948. https://doi.org/10.3390/app14051948
Chicago/Turabian StyleCao, Xu, Saisai Wu, and Qingyuan He. 2024. "Investigation into Influences of Hydraulic Fracturing for Hard Rock Weakening in Underground Mines" Applied Sciences 14, no. 5: 1948. https://doi.org/10.3390/app14051948
APA StyleCao, X., Wu, S., & He, Q. (2024). Investigation into Influences of Hydraulic Fracturing for Hard Rock Weakening in Underground Mines. Applied Sciences, 14(5), 1948. https://doi.org/10.3390/app14051948