The Use of Free Weight Squats in Sports: A Narrative Review—Terminology and Biomechanics
Abstract
:1. Introduction
2. Methods
3. Basic Terminology Related to Squatting Movements
4. Defining Squat Depth by Knee Angle
5. Defining the Foot Position in Squatting
6. Basic Squat Biomechanics
7. Safety and Injury Factors
8. Conclusions and Summary
Author Contributions
Funding
Conflicts of Interest
References
- Chandler, T.J.; Stone, M.H. The squat exercise in athletic conditioning: A position statement and review of the literature. Strength Cond. J. 1991, 13, 51–58. [Google Scholar]
- Chandler, T.J.; Wilson, G.D.; Stone, M.H. A Survey: The squat exercise: Attitudes and practices of high school football coaches. Strength Cond. J. 1989, 11, 30–36. [Google Scholar] [CrossRef]
- Gee, T.I.; Olsen, P.D.; Berger, N.J.; Golby, J.; Thompson, K.G. Strength and conditioning practices in rowing. J. Strength Cond. Res. 2011, 25, 668–682. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.P. Sports Performance Series: The parallel squat. Strength Cond. J. 1985, 7, 4–6. [Google Scholar] [CrossRef]
- Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sports Exerc. 1993, 25, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Wisloff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta-Korta, A.; Fernández-Peña, E.; Torres-Unda, J.; Garbisu-Hualde, A.; Santos-Concejero, J. The role of exercise selection in regional Muscle Hypertrophy: A randomized controlled trial. J. Sports Sci. 2021, 39, 2298–2304. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Hintz, M.J.; Simenz, C.J. Strength and conditioning practices of Major League Baseball strength and conditioning coaches. J. Strength Cond. Res. 2005, 19, 538–546. [Google Scholar]
- Simenz, C.J.; Dugan, C.A.; Ebben, W.P. Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J. Strength Cond. Res. 2005, 19, 495–504. [Google Scholar]
- Ebben, W.P.; Blackard, D.O. Strength and conditioning practices of the national football league strength and conditioning coaches. J. Strength Cond. Res. 2001, 15, 2001. [Google Scholar]
- Ebben, W.P.; Carroll, R.M.; Simenz, C.J. Strength and conditioning practices of National Hockey League strength and conditioning coaches. J. Strength Cond. Res. 2004, 18, 889–897. [Google Scholar]
- Bogdanis, G.C.; Papaspyrou, A.; Souglis, A.G.; Theos, A.; Sotiropoulos, A.; Maridaki, M. Effects of two different half-squat training programs on fatigue during repeated cycling sprints in soccer players. J. Strength Cond. Res. 2011, 25, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noo, M.; Wong, D.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Duehring, M.D.; Feldmann, C.R.; Ebben, W.P. Strength and conditioning practices of United States high school strength and conditioning coaches. J. Strength Cond. Res. 2009, 23, 2188–2203. [Google Scholar] [CrossRef]
- Reverter-Masía, J.; Legaz-Arrese, A.; Munguía-Izquierdo, D.; Barbany, J.R.; Serrano-Ostáriz, E. profile of the resistance training practices of elite Spanish club teams. J. Strength Cond. Res. 2009, 23, 1537–1547. [Google Scholar] [PubMed]
- Zabaloy, S.; Tondelli, E.; Pereira, L.A.; Freitas, T.T.; Loturco, I. Training and testing practices of strength and conditioning coaches in Argentinian Rugby Union. Int. J. Sports Sci. Coach. 2022, 17, 1331–1344. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. Squatting kinematics and kinetics and their application to exercise performance. J. Strength Cond. Res. 2010, 24, 3497–3506. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, T.; Davis, K.; Baagley, J.; Galpin, A. Deep Squats and Knee Health: A Scientific Review; California State University: San Marcos, CA, USA, 2015. [Google Scholar]
- Escamilla, R.F. Knee biomechanics of the dynamic squat exercise. Med. Sci. Sports Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; Lowry, T.M.; Barrentine, S.W.; Andrews, J.R. A three-dimensional biomechanical analysis of the squat during varying stance widths. Med. Sci. Sports Exerc. 2001, 33, 984–998. [Google Scholar] [CrossRef]
- Schoenfeld, B.; Williams, M. Are Deep Squats a Safe and Viable Exercise? Strength Cond. J. 2012, 34, 34–36. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Klusemann, M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med. 2013, 43, 993–1008. [Google Scholar] [CrossRef]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 2012, 113, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Z.; Vongaza, G.L.; Jean, L.M. Net joint moments and muscle activation in barbell squats without and with restricted anterior leg rotation. J. Sports Sci. 2017, 35, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Case, M.J.; Knudson, D.V.; Downey, D.L. Barbell Squat Relative Strength as an Identifier for Lower Extremity Injury in Collegiate Athletes. J. Strength Cond. Res. 2020, 34, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, J.; Esko, A.; Thomee, R.; Svantesson, U. Weight training of the thigh muscles using closed vs. open kinetic chain exercises: A comparison of performance enhancement. J. Orthop. Sports Phys. Ther. 1998, 27, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Wirth, K.; Klusemann, M.; Dalic, J.; Matuschek, C.; Schmidtbleicher, D. Influence of squatting depth on jumping performance. J. Strength Cond. Res. 2012, 26, 3243–3261. [Google Scholar] [CrossRef] [PubMed]
- Hyong, I.H. Effects of squats accompanied by hip joint adduction on the selective activity of the vastus medialis oblique. J. Phys. Ther. Sci. 2015, 27, 1979–1981. [Google Scholar] [CrossRef]
- Speranza, M.J.; Gabbett, T.J.; Johnston, R.D.; Sheppard, J.M. Effect of Strength and Power Training on Tackling Ability in Semiprofessional Rugby League Players. J. Strength Cond. Res. 2016, 30, 336–343. [Google Scholar] [CrossRef]
- Speranza, M.J.A.; Gabbett, T.J.; Greene, D.A.; Johnston, R.D.; Sheppard, J.M. Changes in Rugby League Tackling Ability During a Competitive Season: The Relationship with strength and power Qualities. J. Strength Cond. Res. 2017, 31, 3311–3318. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of squat training with different depths on lower limb muscle volumes. Eur. J. Appl. Physiol. 2019, 119, 1933–1942. [Google Scholar] [CrossRef]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Muscle activation in the loaded free barbell squat: A brief review. J. Strength Cond. Res. 2012, 26, 1169–1178. [Google Scholar] [CrossRef]
- Glassbrook, D.J.; Helms, E.R.; Brown, S.R.; Storey, A.G. A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat. J. Strength Cond. Res. 2017, 31, 2618–2634. [Google Scholar] [CrossRef]
- Donnelly, D.V.; Berg, W.P.; Fiske, D.M. The effect of the direction of gaze on the kinematics of the squat exercise. J. Strength Cond. Res. 2006, 20, 145–150. [Google Scholar]
- Waller, M.; Townsend, R. The front squat and its variations. Strength Cond. J. 2007, 29, 14–19. [Google Scholar] [CrossRef]
- Loturco, I.; McGuigan, M.R.; Freitas, T.T.; Valenzuela, P.; Pereira, L.A.; Pareja-Blanco, F. Performance and reference data in the jump squat at different relative loads in elite sprinters, rugby players, and soccer players. Biol. Sport 2021, 38, 219–227. [Google Scholar] [CrossRef]
- Eliassen, W.; Saeterbakken, A.H.; van den Tillaar, R. Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation. Int. J. Sports Phys. Ther. 2018, 13, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Zheng, N.; Imamura, R.; Macleod, T.; Edwards, W.B.; Hreljac, A.; Fleisig, G.; Wilk, K.; Moorman, C.; Andrews, J. Cruciate ligament force during the wall squat and the one-leg squat. Med. Sci. Sports Exerc. 2009, 41, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Zheng, N.; Macleod, T.D.; Edwards, B.; Imamura, R.; Hreljac, A.; Fleisig, G.; Wilk, K.; Moorman, C.; Andrews, J. Patellofemoral joint force and stress during the wall squat and one-leg squat. Med. Sci. Sports Exerc. 2009, 41, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Caruso, J.F.; Olson, N.M.; Taylor, S.T.; McLagan, J.R.; Shepherd, C.M.; Borgsmiller, J.A.; Mason, M.L.; Riner, R.R.; Gilliland, L.; Grisewold, S. Front squat data reproducibility collected with a triple-axis accelerometer. J. Strength Cond. Res. 2012, 26, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Lloyd, R.; Keogh, J.W.; Agouris, I.; Stewart, A.D. A biomechanical comparison of the traditional squat, powerlifting squat, and box squat. J. Strength Cond. Res. 2012, 26, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Appleby, B.B.; Cormack, S.J.; Newton, R.U. Specificity and Transfer of Lower-Body Strength: Influence of Bilateral or Unilateral Lower-Body Resistance Training. J. Strength Cond. Res. 2019, 33, 318–326. [Google Scholar] [CrossRef]
- Wong, D.P.; Tan, E.C.; Chaouachi, A.; Carling, C.; Castagna, C.; Bloomfield, J.; Behm, D.G. Using squat testing to predict training loads for lower-body exercises in elite karate athletes. J. Strength Cond. Res. 2010, 24, 3075–3080. [Google Scholar] [CrossRef]
- Glassbrook, D.J.; Brown, S.R.; Helms, E.R.; Duncan, S.; Storey, A.G. The High-Bar and Low-Bar Back-Squats: A Biomechanical Analysis. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S1–S18. [Google Scholar] [CrossRef]
- Wretenberg, P.; Feng, Y.; Arborelius, U.P. High- and low-bar squatting techniques during weight-training. Med. Sci. Sports Exerc. 1996, 28, 218–224. [Google Scholar] [CrossRef]
- Fry, A.C.; Smith, J.C.; Schilling, B.K. Effect of knee position on hip and knee torques during the barbell squat. J. Strength Cond. Res. 2003, 17, 629–633. [Google Scholar] [PubMed]
- Harris, G.R.; Stone, M.H.; O’Bryant, H.S.; Proulx, C.M.; Johnson, R.L. Short-term performance effects of high power, high force, or combined weight-training methods. J. Strength Cond. Res. 2000, 14, 14–20. [Google Scholar]
- McBride, J.M.; Skinner, J.W.; Schafer, P.C.; Haines, T.L.; Kirby, T.J. Comparison of kinetic variables and muscle activity during a squat vs. a box squat. J. Strength Cond. Res. 2010, 24, 3195–3199. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Marcolin, G.; Petrone, N. The effect of stance width on the electromyographical activity of eight superficial thigh muscles during back squat with different bar loads. J. Strength Cond. Res. 2009, 23, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.J.; Erickson, T.; McBride, J.M. Model for Progression of Strength, Power, and Speed Training. Strength Cond. J. 2010, 32, 86–90. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training Principles for Power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Graham, J. Front Squat. Strength Cond. J. 2002, 24, 75–76. [Google Scholar]
- Aasa, U.; Svartholm, I.; Andersson, F.; Berglund, L. Injuries among weightlifters and powerlifters: A systematic review. Br. J. Sports Med. 2017, 51, 211–219. [Google Scholar] [CrossRef]
- Baechle, T.R.; Earle, R.W. (Eds.) Essentials of Strength Training and Conditioning; Human Kinetics Publisher: Champaign, IL, USA, 2008. [Google Scholar]
- Bird, S.P.; Casey, S. Exploring the Front Squat. Strength Cond. J. 2012, 34, 27–33. [Google Scholar] [CrossRef]
- Rossi, F.E.; Schoenfeld, B.J.; Ocetnik, S.; Young, J.; Vigotsky, A.; Contreras, B.; Krieger, J.W.; Miller, M.G.; Cholewa, J. Strength, body composition, and functional outcomes in the squat versus leg press exercises. J. Sports Med. Phys. Fit. 2018, 58, 263–270. [Google Scholar] [CrossRef]
- Thompson, S.W.; Lake, J.P.; Rogerson, D.; Ruddock, A.; Barnes, A. Kinetics and Kinematics of the Free-Weight Back Squat and Loaded Jump Squat. J. Strength Cond. Res. 2023, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.W.; Langford, G.A.; Doscher, M.W.; Wiley, L.P.; Mallard, K.G. The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J. Strength Cond. Res. 2005, 19, 9–15. [Google Scholar]
- Jones, M.T.; Ambegaonkar, J.P.; Nindl, B.C.; Smith, J.A.; Headley, S.A. Effects of unilateral and bilateral lower-body heavy resistance exercise on muscle activity and testosterone responses. J. Strength Cond. Res. 2012, 26, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.F. Exercise Technique: Dumbbell Squat, Dumbbell Split Squat, and Barbell Box Step-up. Strength Cond. J. 2011, 33, 76–78. [Google Scholar] [CrossRef]
- Haff, G.G.; Whitley, A.; Potteiger, J.A. A Brief Review: Explosive Exercises and Sports Performance. Strength Cond. J. 2001, 23, 13–20. [Google Scholar] [CrossRef]
- Ebben, W.P.; Feldmann, C.R.; Dayne, A.; Mitsche, D.; Chmielewski, L.M.; Alexander, P.; Knetgzer, K.J. Using squat testing to predict training loads for the deadlift, lunge, step-up, and leg extension exercises. J. Strength Cond. Res. 2008, 22, 1947–1949. [Google Scholar] [CrossRef]
- Weyand, P.G.; Davis, J.A. Running performance has a structural basis. J. Exp. Biol. 2005, 208, 2625–2631. [Google Scholar] [CrossRef]
- Bryanton, M.A.; Kennedy, M.D.; Carey, J.P.; Chiu, L.Z. Effect of squat depth and barbell load on relative muscular effort in squatting. J. Strength Cond. Res. 2012, 26, 2820–2828. [Google Scholar] [CrossRef]
- Appleby, B.; Newton, R.U.; Cormie, P. Changes in strength over a 2-year period in professional rugby union players. J. Strength Cond. Res. 2012, 26, 2538–2546. [Google Scholar] [CrossRef]
- Caterisano, A.; Moss, R.F.; Pellinger, T.K.; Woodruff, K.; Lewis, V.C.; Booth, W.; Khadra, T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J. Strength Cond. Res. 2022, 16, 428–432. [Google Scholar]
- Martinez-Cava, A.; Moran-Navarro, R.; Sanchez-Medina, L.; Gonzalez-Badillo, J.J.; Pallares, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C. Exercise Technique: Coaching Considerations for the Barbell Squat—Part II. Strength Cond. J. 1993, 15, 28–32. [Google Scholar] [CrossRef]
- Fry, A.C.; Aero, T.A.; Bauer, J.A.; Kraemer, W.J. A comparison of methods for determining kinematic properties of three barbell squat exercises. J. Hum. Mov. Stud. 1993, 24, 83–95. [Google Scholar]
- Crum, A.J.; Kawamori, N.; Stone, M.H.; Haff, G.G. The acute effects of moderately loaded concentric-only quarter squats on vertical jump performance. J. Strength Cond. Res. 2012, 26, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.A.; Schilling, B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar] [PubMed]
- Cormie, P.; Deane, R.; McBride, J.M. Methodological concerns for determining power output in the jump squat. J. Strength Cond. Res. 2007, 21, 424–430. [Google Scholar]
- Cormie, P.; McCaulley, G.O.; McBride, J.M. Power versus strength-power jump squat training: Influence on the load-power relationship. Med. Sci. Sports Exerc. 2007, 39, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Kasim, P. Optimizing squat technique. Strength Cond. J. 2007, 29, 10–13. [Google Scholar] [CrossRef]
- Cotter, J.A.; Chaudhari, A.M.; Jamison, S.T.; Devor, S.T. Knee joint kinetics in relation to commonly prescribed squat loads and depths. J. Strength Cond. Res. 2013, 27, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Arabatzi, F.; Kellis, E. Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training. J. Strength Cond. Res. 2012, 26, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.M.; Alzhrani, M.; Alshahrani, S.N.; Alghamdi, W.; Alqahtani, M.; Alzahrani, H. Is Hip Muscle Strength Associated with Dynamic Knee Valgus in a Healthy Adult Population? A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7669. [Google Scholar] [CrossRef] [PubMed]
- Bazyler, C.D.; Sato, K.; Wassinger, C.A.; Lamont, H.S.; Stone, M.H. The efficacy of incorporating partial squats in maximal strength training. J. Strength Cond. Res. 2014, 28, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Boling, M.; Padua, D.; Blackburn, J.T.; Petschauer, M.; Hirth, C. Hip Adduction Does not Affect VMO EMG Amplitude or VMO:VL Ratios during a Dynamic Squat Exercise. J. Sport Rehabil. 2006, 15, 195–205. [Google Scholar] [CrossRef]
- McMaster, D.T.; Cronin, J.; McGuigan, M. Forms of Variable Resistance Training. Strength Cond. J. 2009, 31, 50–64. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Wilk, K.E.; Andrews, J.R. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 1998, 30, 556–569. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Lander, J.E.; Barrentine, S.W.; Andrews, J.R.; Bergemann, B.W.; Moorman III, C.T. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 2001, 33, 1552–1566. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Ostermann, M.; Zeidler, F.; Zimmer, P.; Jentsch, L.; List, R.; Taylor, W.R.; Schellenberg, F. How to squat? Effects of various stance widths, foot placement angles and level of experience on knee, hip and trunk motion and loading. BMC Sports Sci. Med. Rehabil. 2018, 10, 14. [Google Scholar] [CrossRef]
- McCaw, S.T.; Melrose, D.R. Stance width and bar load effects on leg muscle activity during the parallel squat. Med. Sci. Sports Exerc. 1999, 31, 428–436. [Google Scholar] [CrossRef]
- Ninos, J.C.; Irrgang, J.J.; Burdett, R.; Weiss, J.R. Electromyographic analysis of the squat performed in self-selected lower extremity neutral rotation and 30 degrees of lower extremity turn-out from the self-selected neutral position. J. Orthop. Sports. Phys. Ther. 1997, 25, 307–315. [Google Scholar] [CrossRef]
- Signorile, J.F.; Kwiatkowski, K.; Caruso, J.F.; Robertson, B. Effect of Foot Position on the Electromyographical Activity of the Superficial Quadriceps Muscles During the Parallel Squat and Knee Extension. J. Strength Cond. Res. 1995, 9, 182–187. [Google Scholar]
- Everett, G. Olympic Weightlifting (Kindle Edition): A Complete Guide for Athletes and Coaches; Catalyst Athletics: Sunnyvale, CA, USA, 2009. [Google Scholar]
- McLaughlin, T.M.; Dillman, C.J.; Lardner, T.J. A kinematic model of performance in the parallel squat by champion powerlifters. Med. Sci. Sports 1977, 9, 128–133. [Google Scholar] [CrossRef]
- McLaughlin, T.M.; Lardner, T.J.; Dillman, C.J. Kinetics of the parallel squat. Res. Q. 1978, 49, 175–189. [Google Scholar] [CrossRef]
- Delitto, R.S.; Rose, S.J.; Apts, D.W. Electromyographic analysis of two techniques for squat lifting. Phys. Ther. 1987, 67, 1329–1334. [Google Scholar] [CrossRef]
- Donohue, M.R.; Ellis, S.M.; Heinbaugh, E.M.; Stephenson, M.L.; Zhu, Q.; Dai, B. Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks. Res. Sports Med. 2015, 23, 394–411. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Samukawa, M.; Endo, D.; Kasahara, S.; Tohyama, H. Effects of Changing Center of Pressure Position on Knee and Ankle Extensor Moments During Double-Leg Squatting. J. Sports Sci. Med. 2022, 21, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.J.; Meglan, D.A.; Lutz, G.E.; Growney, E.S.; An, K.N. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises. Am. J. Sports Med. 1996, 24, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Salem, G.J.; Salinas, R.; Harding, F.V. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch. Phys. Med. Rehabil. 2003, 84, 1211–1216. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Zink, A.J.; Perry, A.C.; Robertson, B.L.; Roach, K.E.; Signorile, J.F. Peak power, ground reaction forces, and velocity during the squat exercise performed at different loads. J. Strength Cond. Res. 2006, 20, 658–664. [Google Scholar] [PubMed]
- Flanagan, S.P.; Salem, G.J. Bilateral differences in the net joint torques during the squat exercise. J. Strength Cond. Res. 2007, 21, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Logar, J.; Kleva, M.; Marušič, U.; Supej, M.; Gerževič, M. Differences in the knee torque between high-and low-bar back squat techniques: A pilot study. Ann. Kinesiol. 2014, 5, 141–151. [Google Scholar]
- Flanagan, S.P.; Salem, G.J. Lower extremity joint kinetic responses to external resistance variations. J. Appl. Biomech. 2008, 24, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Godawa, T.M.; Credeur, D.P.; Welsch, M.A. Influence of compressive gear on powerlifting performance: Role of blood flow restriction training. J. Strength Cond. Res. 2012, 26, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Hattin, H.C.; Pierrynowski, M.R.; Ball, K.A. Effect of load, cadence, and fatigue on tibio-femoral joint force during a half squat. Med. Sci. Sports Exerc. 1989, 21, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Butler, D.L.; Grood, E.S.; Zernicke, R.F.; Hefzy, M.S. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Jt. Surg. Am. 1984, 66, 344–352. [Google Scholar] [CrossRef]
- McKean, M.R.; Dunn, P.K.; Burkett, B.J. Quantifying the movement and the influence of load in the back squat exercise. J. Strength Cond. Res. 2010, 24, 1671–1679. [Google Scholar] [CrossRef]
- Mehls, K.; Grubbs, B.; Jin, Y.; Coons, J. Electromyography Comparison of Sex Differences During the Back Squat. J. Strength Cond. Res. 2022, 36, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K. Basic back squat. Strength Cond. J. 1997, 19, 20–21. [Google Scholar] [CrossRef]
- Blatnik, J.A.; Skinner, J.W.; McBride, J.M. Effect of supportive equipment on force, velocity, and power in the squat. J. Strength Cond. Res. 2012, 26, 3204–3208. [Google Scholar] [CrossRef]
- Jandacka, D.; Uchytil, J.; Farana, R.; Zahradnik, D.; Hamill, J. Lower extremity power during the squat jump with various barbell loads. Sports Biomech. 2014, 13, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Gollie, J.M.; Davis, S.E.; Guers, J.J.; Witmer, C.A. The effects of load on system and lower-body joint kinetics during jump squats. Sport Biomech. 2012, 11, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Fuchimoto, T.; Toji, H.; Suei, K. Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scand. J. Sports Sci. 1983, 5, 50–55. [Google Scholar]
- McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J. Sports Sci. 2011, 29, 1215–1221. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Martin, J.R. Is the OUTPUT Sports Unit Reliable and Valid When Estimating Back Squat and Bench Press Concentric Velocity? J. Strength Cond. Res. 2022, 36, 2069–2076. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int. J. Sports Physiol. Perform. 2017, 12, 1170–1176. [Google Scholar] [CrossRef]
- Clemente, F.M.; Akyildiz, Z.; Pino-Ortega, J.; Rico-González, M. Validity and Reliability of the Inertial Measurement Unit for Barbell Velocity Assessments: A Systematic Review. Sensors 2021, 21, 2511. [Google Scholar] [CrossRef]
- Guerriero, A.; Varalda, C.; Piacentini, M.F. The Role of Velocity Based Training in the Strength Periodization for Modern Athletes. J. Funct. Morphol. Kinesiol. 2018, 3, 55. [Google Scholar] [CrossRef]
- Handford, M.J.; Bright, T.E.; Mundy, P.; Lake, J.; Theis, N.; Hughes, J.D. The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training. Sports Med. 2022, 52, 2061–2083. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H.; Tsunoda, N.; Kanehisa, H. Time course of changes in muscle and tendon properties during strength training and detraining. J. Strength Cond. Res. 2010, 24, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Sato, K.; Heise, G. Frontal plane knee displacement in barbell back squat. In Proceedings of the 31st International Society of Biomechanics in Sports, Taipei, Taiwan, 7–11 July 2013. [Google Scholar]
- Bell, D.R.; Padua, D.A.; Clark, M.A. Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. Arch. Phys. Med. Rehabil. 2008, 89, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Dahlkvist, N.J.; Mayo, P.; Seedhom, B.B. Forces during squatting and rising from a deep squat. Eng. Med. 1982, 11, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.J.; Kernozek, T.W.; Mikat, R.P.; Wright, G.A.; Simons, S.Z.; Wallace, K. LA comparison between back squat exercise and vertical jump kinematics: Implications for determining anterior cruciate ligament injury risk. J. Strength Cond. Res. 2008, 22, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Felício, L.R.; Dias, L.A.; Silva, A.P.; Oliveira, A.S.; Bevilaqua-Grossi, D. Muscular activity of patella and hip stabilizers of healthy subjects during squat exercises. Rev. Bras. Fisioter. 2011, 15, 206–211. [Google Scholar] [CrossRef]
- Baffa, A.P.; Felicio, L.R.; Saad, M.C.; Santos, A.; Bevilaqua-Grossi, D. Quantitative MRI of vastus medialis, vastus lateralis and gluteus medius muscle workload after squat exercise: Comparison between squatting with hip adduction and hip abduction. J. Hum. Kinet. 2012, 33, 5–14. [Google Scholar] [CrossRef]
- Dix, J.; Marsh, S.; Dingenen, B.; Malliaras, P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: A systematic review. Phys. Ther. Sport 2019, 37, 197–209. [Google Scholar] [CrossRef]
- Graham, J.F. Back squat. Strength Cond. J. 2001, 23, 28. [Google Scholar] [CrossRef]
- Fortenbaugh, D.; Sato, K.; Hitt, J. The effects of weightlifting shoes on squat kinematics. In Proceedings of the 28 International Conference on Biomechanics in Sports, Marquette, MI, USA, 19–23 July 2010. [Google Scholar]
- Cross, T. Motivation: Rationale and Coaching Points for Olympic Style Lifting to Enhance Volleyball Performance. Strength Cond. J. 1993, 15, 59–61. [Google Scholar] [CrossRef]
- Isaka, T.; Okada, J.; Funato, K. Kinematic analysis of the barbell during the snatch movement of elite Asian weight lifters. J. Appl. Biomech. 1996, 12, 508–516. [Google Scholar] [CrossRef]
- Schilling, B.K.; Stone, M.H.; O’Bryant, H.S.; Fry, A.C.; Coglianese, R.H.; Pierce, K.C. Snatch technique of collegiate national level weightlifters. J. Strength Cond. Res. 2002, 16, 551–555. [Google Scholar] [PubMed]
- Rossi, S.J.; Buford, T.W.; Smith, D.B.; Kennel, R.; Haff, E.E.; Haff, G.G. Bilateral comparison of barbell kinetics and kinematics during a weightlifting competition. Int. J. Sports Physiol. Perform. 2007, 2, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M.; Myer, G.D. The Back Squat Part 2: Targeted Training Techniques to Correct Functional Deficits and Technical Factors that Limit Performance. Strength Cond. J. 2015, 37, 13–60. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Heise, G.D. Influence of weight distribution asymmetry on the biomechanics of a barbell back squat. J. Strength Cond. Res. 2012, 26, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Painter, K.B.; Haff, G.G.; Ramsey, M.W.; McBride, J.; Triplett, T.; Sands, W.A.; Lamont, H.S.; Stone, M.E.; Stone, M.H. Strength gains: Block versus daily undulating periodization weight training among track and field athletes. Int. J. Sports Physiol. Perform. 2012, 7, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Potvin, J.R.; Norman, R.W.; McGill, S.M. Reduction in anterior shear forces on the L 4L 5 disc by the lumbar musculature. Clin. Biomech. 1991, 6, 88–96. [Google Scholar] [CrossRef]
- Gantois, P.; Fonseca, F.S.; Nakamura, F.Y.; de Sousa Forte, L.; Fernandez-Fernande, J.; Batista, G.R. Analysis of velocity- and power-load relationships of the free-weight back-squat and hexagonal bar deadlift exercises. Biol. Sport 2023, 40, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Häkkinen, K.; Gonzalez-Badillo, J.J.; Ibáñez, J.; Gorostiaga, E.M. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur. J. Appl. Physiol. 2002, 87, 264–271. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef]
- Thomas, M.; Fiatarone, M.A.; Fielding, R.A. Leg power in young women: Relationship to body composition, strength, and function. Med. Sci. Sports Exerc. 1996, 28, 1321–1326. [Google Scholar] [CrossRef]
- Kellis, E.; Arambatzi, F.; Papadopoulos, C. Effects of load on ground reaction force and lower limb kinematics during concentric squats. J. Sports Sci. 2005, 23, 1045–1055. [Google Scholar] [CrossRef]
- Li, G.; Zayontz, S.; DeFrate, L.E.; Most, E.; Suggs, J.F.; Rubash, H.E. Kinematics of the knee at high flexion angles: An in vitro investigation. J. Orthop. Res. 2004, 22, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Defrate, L.E.; Rubash, H.E.; Gill, T.J. In vivo kinematics of the ACL during weight-bearing knee flexion. J. Orthop. Res. 2005, 23, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Panariello, R.A.; Backus, S.I.; Parker, J.W. The effect of the squat exercise on anterior-posterior knee translation in professional football players. Am. J. Sports Med. 1994, 22, 768–773. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Gülay, T.; Stoop, M.; List, R.; Gerber, H.; Schellenberg, F.; Stüssi, E. Comparison of the angles and corresponding moments in the knee and hip during restricted and unrestricted squats. J. Strength Cond. Res. 2012, 26, 2829–2836. [Google Scholar] [CrossRef]
- Charlton, P.C.; Bryant, A.L.; Kemp, J.L.; Clark, R.A.; Crossley, K.M.; Collins, N.J. Single-Leg Squat Performance is Impaired 1 to 2 Years After Hip Arthroscopy. PM&R 2016, 8, 321–330. [Google Scholar]
- Rossi, M.D.; Eberle, T.; Roche, M.; Brunt, D.; Wong, M.; Waggoner, M.; Blake, R.; Burwell, B.; Baxter, A. Use of a squatting movement as a clinical marker of function after total knee arthroplasty. Am. J. Phys. Med. Rehabil. 2013, 92, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Sanford, B.A.; Williams, J.L.; Zucker-Levin, A.; Mihalko, W.M. Asymmetric ground reaction forces and knee kinematics during squat after anterior cruciate ligament (ACL) reconstruction. Knee 2016, 23, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Basmajian, J.V. Muscles alive. Their functions revealed by electromyography. Acad. Med. 1962, 37, 802. [Google Scholar]
- Isear, J.A., Jr.; Erickson, J.C.; Worrell, T.W. EMG analysis of lower extremity muscle recruitment patterns during an unloaded squat. Med. Sci. Sports Exerc. 1997, 29, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Signorile, J.F.; Weber, B.; Roll, B.; Caruso, J.F.; Lowensteyn, I.; Perry, A.C. An Electromyographical Comparison of the Squat and Knee Extension Exercises. J. Strength Cond. Res. 1994, 8, 178–183. [Google Scholar]
- Wilk, K.E.; Escamilla, R.F.; Fleisig, G.S.; Caruso, J.F.; Lowensteyn, I.; Perry, A.C. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am. J. Sports Med. 1996, 24, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; McCaulley, G.O.; Cormie, P.; Cavill, M.J.; McBride, J.M. Trunk muscle activity during stability ball and free weight exercises. J. Strength Cond. Res. 2008, 22, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Gorsuch, J.; Long, J.; Miller, K.; Primeau, K.; Rutledge, S.; Sossong, A.; Durocher, J.J. The effect of squat depth on multiarticular muscle activation in collegiate cross-country runners. J. Strength Cond. Res. 2013, 27, 2619–2625. [Google Scholar] [CrossRef]
- Dionisio, V.C.; Almeida, G.L.; Duarte, M.; Hirata, R.P. Kinematic, kinetic and EMG patterns during downward squatting. J. Electromyogr. Kinesiol. 2008, 18, 134–143. [Google Scholar] [CrossRef]
- Murawa, M.; Fryzowicz, A.; Kabacinski, J.; Jurga, J.; Gorwa, J.; Galli, M.; Zago, M. Muscle activation varies between high-bar and low-bar back squat. PeerJ 2020, 8, e9256. [Google Scholar] [CrossRef]
- Lieberman, D.E.; Raichlen, D.A.; Pontzer, H.; Bramble, D.M.; Cutright-Smith, E. The human gluteus maximus and its role in running. J. Exp. Biol. 2006, 209, 2143–2155. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Roeleveld, K.; Karlsson, J.S. Inhomogeneities in muscle activation reveal motor unit recruitment. J. Electromyogr. Kinesiol. 2005, 15, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Wakahara, T.; Kawakami, Y. Task-dependent inhomogeneous muscle activities within the bi-articular human rectus femoris muscle. PLoS ONE 2012, 7, e34269. [Google Scholar] [CrossRef] [PubMed]
- Travis, S.K.; Ishida, A.; Taber, C.B.; Fry, A.C.; Stone, M.H. Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J. Funct. Morphol. Kinesiol. 2020, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Chandler, T.J.; Wilson, G.D.; Stone, M.H. The effect of the squat exercise on knee stability. Med. Sci. Sports Exerc. 1989, 21, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.C.; Quinlan, J.F.; Stapleton, R.; FitzPatrick, D.P.; McCormack, D. Three-dimensional motion analysis of the lumbar spine during “free squat” weight lift training. Am. J. Sports Med. 2007, 35, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, V.; Berglund, L.; Aasa, U. Narrative review of injuries in powerlifting with special reference to their association to the squat, bench press and deadlift. BMJ Open Sport Exerc. Med. 2018, 4, e000382. [Google Scholar] [CrossRef]
- Calhoon, G.; Fry, A.C. Injury rates and profiles of elite competitive weightlifters. J. Athl. Train. 1999, 34, 232–238. [Google Scholar]
- Willardson, J.M.; Fontana, F.E.; Bressel, E. Effect of surface stability on core muscle activity for dynamic resistance exercises. Int. J. Sports Physiol. Perform. 2009, 4, 97–109. [Google Scholar] [CrossRef]
- Adams, M.A.; Dolan, P. Recent advances in lumbar spinal mechanics and their clinical significance. Clin. Biomech. 1995, 10, 3–19. [Google Scholar] [CrossRef]
- List, R.; Gulay, T.; Stoop, M.; Lorenzetti, S. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats. J. Strength Cond. Res. 2013, 27, 1529–1538. [Google Scholar] [CrossRef]
- Adams, M.A.; May, S.; Freeman, B.J.; Morrison, H.P.; Dolan, P. Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine 2000, 25, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Hutton, W.C.; Adams, M.A. Can the lumbar spine be crushed in heavy lifting? Spine 1982, 7, 586–590. [Google Scholar] [CrossRef]
- Dickerman, R.D.; Pertusi, R.; Smith, G.H. The upper range of lumbar spine bone mineral density? An examination of the current world record holder in the squat lift. Int. J. Sports Med. 2000, 21, 469–470. [Google Scholar] [CrossRef] [PubMed]
- Ariel, B. Biomechanical Analysis of the Knee Joint during Deep Knee Bends with Heavy Loads; University Park Press: Baltimore, ML, USA, 1974. [Google Scholar]
- Granhed, H.; Jonson, R.; Hansson, T. The loads on the lumbar spine during extreme weight lifting. Spine 1987, 12, 146–149. [Google Scholar] [CrossRef]
- Russell, P.J.; Phillips, S.J. A preliminary comparison of front and back squat exercises. Res. Q. Exerc. Sport 1989, 60, 201–208. [Google Scholar] [CrossRef]
- Aasa, U.; Bengtsson, V.; Berglund, L.; Öhberg, F. Variability of lumbar spinal alignment among power- and weightlifters during the deadlift and barbell back squat. Sports Biomech. 2022, 21, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Smeets, R.J. Interaction between pain, movement, and physical activity: Short-term benefits, long-term consequences, and targets for treatment. Clin. J. Pain 2015, 31, 97–107. [Google Scholar] [CrossRef]
- Lehman, G.J. The Role and Value of Symptom-Modification Approaches in Musculoskeletal Practice. J. Orthop. Sports Phys. Ther. 2018, 48, 430–435. [Google Scholar] [CrossRef]
- Zink, A.J.; Whiting, W.C.; Vincent, W.J.; McLaine, A.J. The effects of a weight belt on trunk and leg muscle activity and joint kinematics during the squat exercise. J. Strength Cond. Res. 2001, 15, 235–240. [Google Scholar]
- Bauer, J.A.; Frx, A.; Carter, C. The use of lumbar-supporting weight belts while performing squats: Erector spinae electromyographic activity. J Strength Cond Res. 1999, 13, 384–388. [Google Scholar] [CrossRef]
- Miyamoto, K.; Iinuma, N.; Maeda, M.; Wada, E.; Shimizu, K. Effects of abdominal belts on intra-abdominal pressure, intra-muscular pressure in the erector spinae muscles and myoelectrical activities of trunk muscles. Clin. Biomech. 1999, 14, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Zelle, J.; Barink, M.; De Waal Malefijt, M.; Verdonschot, N. Thigh-calf contact: Does it affect the loading of the knee in the high-flexion range? J. Biomech. 2009, 42, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.W.; Smith, C.; Grenier, S.G. In a dynamic lifting task, the relationship between cross-sectional abdominal muscle thickness and the corresponding muscle activity is affected by the combined use of a weightlifting belt and the Valsalva maneuver. J. Electromyogr. Kinesiol. 2016, 28, 99–103. [Google Scholar] [CrossRef]
- Hackett, D.A.; Chow, C.M. The Valsalva maneuver: Its effect on intra-abdominal pressure and safety issues during resistance exercise. J. Strength Cond. Res. 2013, 27, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- McGill, S.M.; Norman, R.W.; Sharratt, M.T. The effect of an abdominal belt on trunk muscle activity and intra-abdominal pressure during squat lifts. Ergonomics 1990, 33, 147–160. [Google Scholar] [CrossRef]
- Hamlyn, N.; Behm, D.G.; Young, W.B. Trunk muscle activation during dynamic weight-training exercises and isometric instability activities. J. Strength Cond. Res. 2007, 21, 1108–1112. [Google Scholar] [PubMed]
- Klein, K.K. The deep squat exercise as utilized in weight training for athletes and its effect on the ligaments of the knee. J. Assoc. Phys. Ment. Rehabil. 1961, 15, 6–11. [Google Scholar]
- Hefzy, M.S.; Kelly, B.P.; Cooke, T.D. Kinematics of the knee joint in deep flexion: A radiographic assessment. Med. Eng. Phys. 1998, 20, 302–307. [Google Scholar] [CrossRef]
- Yack, H.J.; Collins, C.E.; Whieldon, T.J. Comparison of closed and open kinetic chain exercise in the anterior cruciate ligament-deficient knee. Am. J. Sports Med. 1993, 21, 49–54. [Google Scholar] [CrossRef]
- Noyes, F.R.; Grood, E.S. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Jt. Surg. Am. 1976, 58, 1074–1082. [Google Scholar] [CrossRef]
- Race, A.; Amis, A.A. The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 1994, 27, 13–24. [Google Scholar] [CrossRef]
- Nisell, R.; Nemeth, G.; Ohlsen, H. Joint forces in extension of the knee. Analysis of a mechanical model. Acta Orthop. Scand. 1986, 57, 41–46. [Google Scholar] [CrossRef]
- Nisell, R. Joint load during the parallel squat in powerlifting and force analysis of in vivo bilateral quadriceps tendon rupture. Scand. J. Sports Sci. 1986, 8, 63–70. [Google Scholar]
- Nisell, R. Mechanics of the knee. A study of joint and muscle load with clinical applications. Acta Orthop. Scand. Suppl. 1985, 216, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Zernicke, R.F.; Garhammer, J.; Jobe, F.W. Human patellar-tendon rupture. J. Bone Jt. Surg. Am. 1977, 59, 179–183. [Google Scholar] [CrossRef]
- Herberhold, C.; Faber, S.; Stammberger, T.; Steinlechner, M.; Putz, R.; Englmeier, K.H.; Reiser, M.; Eckstein, F. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J. Biomech. 1999, 32, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Milentijevic, D.; Helfet, D.L.; Torzilli, P.A. Influence of stress magnitude on water loss and chondrocyte viability in impacted articular cartilage. J. Biomech. Eng. 2003, 125, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Caruntu, D.I.; Hefzy, M.S.; Goel, V.K.; Goitz, H.T.; Dennis, M.J.; Agrawal, V. Modeling the knee joint in deep flexion: “thigh and calf” contact. In Proceedings of the Summer Bioengineering Conference, Key Biscayne, FL, USA, 25–29 June 2003. [Google Scholar]
- Nagura, T.; Dyrby, C.O.; Alexander, E.J.; Andriacchi, T.P. Mechanical loads at the knee joint during deep flexion. J. Orthop. Res. 2002, 20, 881–886. [Google Scholar] [CrossRef]
- Hehne, H.J. Biomechanics of the patellofemoral joint and its clinical relevance. Clin. Orthop. Relat. Res. 1990, 258, 73–85. [Google Scholar] [CrossRef]
- Huberti, H.H.; Hayes, W.C. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J. Bone Jt. Surg. Am. 1984, 66, 715–724. [Google Scholar] [CrossRef]
Type | Common Variant | Internal Angle of Knee | Description of Bottom Position | References |
---|---|---|---|---|
Back squat | Full squat | 40–45° | Tops of the thighs are positioned so that they are below parallel when compared to the floor. | [45,66,67] |
Parallel squat | 60–70° | In this position the top of the thigh is slightly below parallel to the floor. Additionally, a straight horizontal line can be drawn from the top of the knee to the inguinal fold. | [45,67,68] | |
Half squat | 80–100° | In this position the bottom of the thigh is approximately parallel to the floor. | [66,67,69] | |
Quarter squat | 110–140° | Often categorized as halfway between a full squat and an upright standing position. Often used as part of strength–power–potentiating complexes. | [2,66,70] | |
Box squat | 60–70° | During the box squat, the box height should be selected so that the bottom position of the squat is achieved when the top of the thigh is parallel to the floor. | ||
Jump Squat | Parallel squat | 60–70° | The tops of the thighs are positioned so that they are below parallel when compared to the floor. Additionally, a straight horizontal line can be drawn from the top of the knee to the inguinal fold. | [71] |
Half squat | 80–100° | In this position the bottom of the thigh is approximately parallel to the floor. | [72,73] | |
Front Squat | Full squat | 40–45° | Tops of the thighs are positioned so that they are below parallel when compared to the floor. | [22] |
Parallel squat | 60–70° | Tops of the thighs are positioned so that they are slightly below parallel when compared to the floor. Additionally, a straight horizontal line can be drawn from the top of the knee to the inguinal fold. | [35] | |
Half squat | 80–100° | In this position the bottom of the thigh is approximately parallel to the floor. | [27,35] | |
Quarter squat | 110–140° | Often categorized as halfway between a full squat and an upright standing position. Often used as part of strength–power–potentiating complexes. | [70] | |
One–leg Squat | Full squat | 60–70° | In this position the top of the thigh is slightly below parallel to the floor. Additionally, a straight horizontal line can be drawn from the top of the knee to the inguinal fold. | [38,58,59] |
Author | Squatting Movement | Stance Width Measurement | ||
---|---|---|---|---|
Narrow Stance | Medium Stance | Wide Stance | ||
Escamilla et al. [20,81] | Low bar back squat | 40.9 ± 3.8 cm * 87–118% shoulder width | 59.7 ± 6.6 cm * 121–153% shoulder width | 69.6 ± 9.5 cm * 158–196% shoulder width |
McCaw et al. [84] | High bar back squat | 75% of shoulder width | Shoulder width | 120% shoulder width |
Paoli et al. [49] | High bar back squat | 100% GTd | 150% GTd | 200% GTd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stone, M.H.; Hornsby, W.G.; Mizuguchi, S.; Sato, K.; Gahreman, D.; Duca, M.; Carroll, K.M.; Ramsey, M.W.; Stone, M.E.; Pierce, K.C.; et al. The Use of Free Weight Squats in Sports: A Narrative Review—Terminology and Biomechanics. Appl. Sci. 2024, 14, 1977. https://doi.org/10.3390/app14051977
Stone MH, Hornsby WG, Mizuguchi S, Sato K, Gahreman D, Duca M, Carroll KM, Ramsey MW, Stone ME, Pierce KC, et al. The Use of Free Weight Squats in Sports: A Narrative Review—Terminology and Biomechanics. Applied Sciences. 2024; 14(5):1977. https://doi.org/10.3390/app14051977
Chicago/Turabian StyleStone, Michael H., W. Guy Hornsby, Satoshi Mizuguchi, Kimitake Sato, Daniel Gahreman, Marco Duca, Kevin M. Carroll, Michael W. Ramsey, Margaret E. Stone, Kyle C. Pierce, and et al. 2024. "The Use of Free Weight Squats in Sports: A Narrative Review—Terminology and Biomechanics" Applied Sciences 14, no. 5: 1977. https://doi.org/10.3390/app14051977
APA StyleStone, M. H., Hornsby, W. G., Mizuguchi, S., Sato, K., Gahreman, D., Duca, M., Carroll, K. M., Ramsey, M. W., Stone, M. E., Pierce, K. C., & Haff, G. G. (2024). The Use of Free Weight Squats in Sports: A Narrative Review—Terminology and Biomechanics. Applied Sciences, 14(5), 1977. https://doi.org/10.3390/app14051977