Signed Fingermark Liveness Detection Method Based on Deep Residual Networks and Multimodal Decision Fusion
Abstract
:1. Introduction
- (1)
- To propose a network model, SFNet (Signed Fingermark Net), based on deep residual networks and a multi-probability label classification strategy, which achieves the purpose of signed fingermark liveness detection and achieves high accuracy on a fingermark dataset.
- (2)
- To design and combine a multi-score fusion strategy based on the quality weights of local blocks of fingermark and a model fusion strategy based on evidence theory to further improve the detection accuracy.
2. Related Works
3. Proposed Method
3.1. Input Data Preprocessing
3.2. SFNet
3.3. Multimodal Decision-Level Fusion Approach
3.3.1. Multi-Probability Labeling Strategy
3.3.2. Score Fusion Strategy
3.3.3. Model Fusion Strategies Based on Evidence Theory
4. Experiments
4.1. Database
4.2. Experimental Environment and Evaluation Indicators
4.3. Analysis of Experimental Results
4.3.1. Fingerprint Verification
4.3.2. Signed Fingermark Verification
4.3.3. Ablation and Migration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Liu, C.; Xiao, G.; Fang, S. Fake Fingerprint Detection Algorithm Based on Curvelet Texture Analysis and SVM-KNN Classification. Comput. Sci. 2014, 41, 303–308. [Google Scholar]
- Jung, H.; Lee, H. Semi-transparent reduced graphene oxide temperature sensor on organic light-emitting diodes for fingerprint liveness detection of smartphone authentication. Sens. Actuators A-Phys. 2021, 331, 112876. [Google Scholar] [CrossRef]
- Qin, W.; Yang, F.; Liu, Y.; Wang, Z. Research on the technology of fingerprints image pickup and true-false distinguish. Microcomput. Inf. 2007, 19, 287–289. [Google Scholar]
- Zhang, Z. Research on Fingerprint Anti-counterfeiting Technology and Detection Method. China Secur. Prot. Technol. Appl. 2021, 2, 58–60. [Google Scholar]
- Marcialis, G.L.; Roli, F.; Tidu, A. Analysis of Fingerprint Pores for Vitality Detection. In Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010. [Google Scholar]
- Espinoza, M.; Champod, C. Using the number of pores on fingerprint images to detect spoofing attacks. In Proceedings of the 2011 International Conference on Hand-Based Biometrics, Hong Kong, China, 17–18 November 2011; pp. 1289–1292. [Google Scholar]
- Nikam, S.B.; Agarwal, S. Texture and wavelet-based spoof fingerprint detection for fingerprint biometric systems. In Proceedings of the 2008 International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, 16–18 July 2008; pp. 675–680. [Google Scholar]
- Ververidis, D.; Kotropoulo, S.C. Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition. Signal Process. 2008, 88, 2956–2970. [Google Scholar] [CrossRef]
- Lyu, R.; Xia, Z.; Chen, X.; Sun, X. Fingerprint liveness detection based on weber binarized perception features. J. Appl. Sci. 2016, 34, 616–624. [Google Scholar]
- Chen, J.; Shan, S.; He, C.; Zhao, G.; Pietikäinen, M.; Chen, X.; Gao, W. WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1705–1720. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.; Zhang, X.; Huang, X. Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Gao, Z.; Xuan, H.Z.; Zhang, H.; Wan, S.; Choo, K.K.R. Adaptive fusion and category-level dictionary learning model for multiview human action recognition. IEEE Internet Things J. 2019, 6, 9128–9293. [Google Scholar] [CrossRef]
- Chugh, T.; Cao, K.; Jain, A.K. Fingerprint spoof buster: Use of minutiae-centered patches. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2190–2202. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2022, arXiv:1409.1556. [Google Scholar]
- Luo, H.L.; Lu, F.; Yan, Y. Action recognition based on multi-model voting with cross layer fusion. J. Electron. Inf. Technol. 2019, 41, 649–655. [Google Scholar]
- Yuan, C.; Xia, Z.; Sun, X.; Wu, Q.J. Deep residual network with adaptive learning framework for fingerprint liveness detection. IEEE Trans. Cogn. Dev. Syst. 2019, 12, 461–473. [Google Scholar] [CrossRef]
- Yambay, D.; Schuckers, S.; Denning, S.; Sandmann, C.; Bachurinski, A.; Hogan, J. LivDet 2017-fingerprint systems liveness detection competition. In Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo Beach, CA, USA, 22–25 October 2018; pp. 1–9. [Google Scholar]
- Casula, R.; Micheletto, M.; Orrù, G.; Delussu, R.; Concas, S.; Panzino, A.; Marcialis, G.L. LivDet 2021 fingerprint liveness detection competition-into the unknown. In Proceedings of the 2021 IEEE International Joint Conference on Biometrics (IJCB), Shenzhen, China, 4–7 August 2021; pp. 1–6. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, C.; Li, Z.; Lv, Y.; Zhu, K. A method of fingermark anti-counterfeiting for forensic document identification. Pattern Recognit. Lett. 2021, 152, 86–92. [Google Scholar] [CrossRef]
- Raj, S.; Pannu, J.S.; Fernandes, S.L.; Ramanathan, A.; Pullum, L.L.; Jha, S.K. Attacking NIST biometric image software using nonlinear optimization. Pattern Recognit. Lett. 2020, 131, 79–84. [Google Scholar] [CrossRef]
- Mura, V.; Orrù, G.; Casula, R.; Sibiriu, A.; Loi, G.; Tuveri, P.; Ghiani, L.; Marcialis, G.L. LivDet 2017 fingerprint liveness detection competition. In Proceedings of the 2018 International Conference on Biometrics, Gold Coast, QLD, Australia, 20–23 February 2018; pp. 297–302. [Google Scholar]
- Zhang, Y.; Shi, D.; Zhan, X.; Cao, D.; Zhu, K.; Li, Z. Slim-ResCNN: A deep residual convolutional neural network for fingerprint liveness detection. IEEE Access 2019, 7, 91476–91487. [Google Scholar] [CrossRef]
- Arun, K.T.K.; Vinayakumar, R.; Sajith, V.V.V.; Sowmya, V.; Soman, K.P. Convolutional neural networks for fingerprint liveness detection system. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems, Madurai, India, 15–17 May 2019; pp. 243–246. [Google Scholar]
LivDet2017 | Train | Test | ||||||
---|---|---|---|---|---|---|---|---|
Live | Ecoflex | Body Double | WoodGlue | Live | Gelatine | Latex | Liquid Ecoflex | |
Green Bit | 1000 | 400 | 400 | 400 | 1700 | 680 | 680 | 680 |
Orcanthus | 1000 | 400 | 400 | 400 | 1700 | 680 | 658 | 680 |
Digtial Persona | 999 | 400 | 399 | 400 | 1700 | 679 | 670 | 679 |
Type | Train | Test | |||
---|---|---|---|---|---|
Signed | Unsigned | Signed | Unsigned | ||
Live Fingermarks | 32,667 | 25,511 | 8649 | 6459 | |
Fake Fingermarks | Conductive silicone | 6637 | 7500 | 1618 | 2124 |
Skin color silicone | 6322 | 3930 | 1440 | 1220 | |
Wood glue | 5393 | 600 | 1365 | 160 | |
Clear silicone | 7453 | 8790 | 1885 | 2343 | |
Fingerprint seals | 5141 | 2280 | 1256 | 550 | |
Total | 63,613 | 48,611 | 16,213 | 12,856 |
Model | Green Bit | Digital Persona | Orcanthus | Overall |
---|---|---|---|---|
JLW_A | 95.08 | 94.09 | 93.52 | 94.23 |
JLW_B | 96.44 | 95.59 | 93.71 | 95.25 |
ganfp | 95.67 | 93.66 | 94.16 | 94.50 |
ZYL_2 | 96.26 | 94.73 | 93.17 | 94.72 |
SFNet | 96.82 | 96.64 | 95.27 | 96.16 |
Model | Train | Live | Fake | Overall |
---|---|---|---|---|
SFNet | Signed | 98.41 | 98.68 | 98.54 |
Unsigned | 98.96 | 98.84 | 98.90 | |
SFNet_1 | Signed | 98.49 | 99.00 | 98.73 |
Unsigned | 98.97 | 99.26 | 99.13 | |
SFNet_2 | Signed | 70.62 | 67.96 | 69.35 |
Unsigned | 97.98 | 97.79 | 97.89 |
Type | SFNet | SFNet_1 | |
---|---|---|---|
Fake | Conductive silicone | 98.76 | 99.07 |
Skin color silicone | 98.68 | 98.12 | |
Wood glue | 99.12 | 99.19 | |
Clear silicone | 98.62 | 98.99 | |
Fingerprint seals | 99.52 | 99.28 | |
Live | 98.41 | 98.49 |
Model | Live | Fake | Overall |
---|---|---|---|
SFNet | 98.49 | 99.00 | 98.74 |
SFNet_3 | 98.71 | 99.15 | 98.92 |
SFNet_4 | 99.08 | 99.27 | 99.17 |
Block Size | Signed | Unsigned | Overall |
---|---|---|---|
112 × 112 | 91.02 | 96.13 | 93.26 |
224 × 224 | 95.09 | 97.68 | 96.23 |
300 × 300 | 99.08 | 99.27 | 99.17 |
500 × 300 | 93.97 | 95.12 | 94.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, Z.; Wang, J.; Chen, Z. Signed Fingermark Liveness Detection Method Based on Deep Residual Networks and Multimodal Decision Fusion. Appl. Sci. 2024, 14, 1998. https://doi.org/10.3390/app14051998
Zhang Y, Zhou Z, Wang J, Chen Z. Signed Fingermark Liveness Detection Method Based on Deep Residual Networks and Multimodal Decision Fusion. Applied Sciences. 2024; 14(5):1998. https://doi.org/10.3390/app14051998
Chicago/Turabian StyleZhang, Yongliang, Zihan Zhou, Jiahang Wang, and Zipeng Chen. 2024. "Signed Fingermark Liveness Detection Method Based on Deep Residual Networks and Multimodal Decision Fusion" Applied Sciences 14, no. 5: 1998. https://doi.org/10.3390/app14051998
APA StyleZhang, Y., Zhou, Z., Wang, J., & Chen, Z. (2024). Signed Fingermark Liveness Detection Method Based on Deep Residual Networks and Multimodal Decision Fusion. Applied Sciences, 14(5), 1998. https://doi.org/10.3390/app14051998