Excitonic Evolution in WS2/MoS2 van der Waals Heterostructures Turned by Out-of-Plane Localized Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ML-WS2 and ML-MoS2
2.2. Fabrication of WS2/MoS2 vdW Heterostructure
2.3. Measurement
2.4. DFT Calculation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Pizzocchero, F.; Gammelgaard, L.; Jessen, B.S.; Caridad, J.M.; Wang, L.; Hone, J.; Boggild, P.; Booth, T.J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894. [Google Scholar] [CrossRef]
- Fan, S.D.; Cao, R.; Wang, L.D.; Gao, S.; Zhang, Y.P.; Yu, X.; Zhang, H. Quantum tunneling in two-dimensional van der Waals heterostructures and devices. Sci. Chin. Mater. 2021, 64, 2359–2387. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhu, M.Y.; Zhao, R.J.; Liu, X.J.; Zhao, Y.C.; Wei, H.X.; Zhang, J.Y.; Zheng, X.Q.; Shen, J.X.; Huang, H.; et al. The fabrication and physical properties of two-dimensional van der Waals heterostructures. Acta Phys. Sin. 2022, 71, 048502. [Google Scholar] [CrossRef]
- Dean, C.R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 2013, 497, 598–602. [Google Scholar] [CrossRef]
- Hunt, B.; Sanchez-Yamagishi, J.D.; Young, A.F.; Yankowitz, M.; LeRoy, B.J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 2013, 340, 1427–1430. [Google Scholar] [CrossRef]
- Ponomarenko, L.A.; Gorbachev, R.V.; Yu, G.L.; Elias, D.C.; Jalil, R.; Patel, A.A.; Mishchenko, A.; Mayorov, A.S.; Woods, C.R.; Wallbank, J.R.; et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594–597. [Google Scholar] [CrossRef]
- Spanton, E.M.; Zibrov, A.A.; Zhou, H.X.; Taniguchi, T.; Watanabe, K.; Zaletel, M.P.; Young, A.F. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 2018, 360, 62–66. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Idzuchi, H.; Pientka, F.; Huang, K.F.; Harada, K.; Gül, Ö.; Shin, Y.J.; Nguyen, L.T.; Jo, N.H.; Shindo, D.; Cava, R.J.; et al. Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator. Nat. Commun. 2021, 12, 5332. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Hou, F.C.; Huang, X.L.; Wang, G.; Fu, Z.H.; Liu, W.L.; Yuan, G.W.; Xi, X.X.; Xu, J.; Lin, J.H.; et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 2023, 621, 499–505. [Google Scholar] [CrossRef]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef]
- Kang, S.; Eshete, Y.A.; Lee, S.; Won, D.; Im, S.; Lee, S.; Cho, S.; Yang, H. Bandgap modulation in the two-dimensional core-shell-structured monolayers of WS2. Iscience 2022, 25, 103563. [Google Scholar] [CrossRef]
- Kim, J.S.; Maity, N.; Kim, M.; Fu, S.Y.; Juneja, R.; Singh, A.; Akinwande, D.; Lin, J.F. Strain-Modulated Interlayer Charge and Energy Transfers in MoS2/WS2 Heterobilayer. ACS Appl. Mater. Interfaces 2022, 14, 46841–46849. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.B.; Li, T.S.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.L.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef]
- Su, H.M.; Wei, C.R.; Deng, A.Y.; Deng, D.M.; Yang, C.L.; Dai, J.F. Anomalous enhancement of valley polarization in multilayer WS2 at room temperature. Nanoscale 2017, 9, 5148–5154. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef]
- Zeng, H.L.; Dai, J.F.; Yao, W.; Xiao, D.; Cui, X.D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef]
- Chernikov, A.; Berkelbach, T.C.; Hill, H.M.; Rigosi, A.; Li, Y.; Aslan, B.; Reichman, D.R.; Hybertsen, M.S.; Heinz, T.F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802. [Google Scholar] [CrossRef]
- Hong, X.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef]
- Qin, C.; Liu, W.; Liu, N.; Zhou, Z.; Song, J.; Ma, S.-H.; Jiao, Z.-Y.; Lei, S. Observation of hole transfer in MoS2/WS2 van der Waals heterostructures. ACS Photonics 2022, 9, 1709–1716. [Google Scholar] [CrossRef]
- Wu, L.; Cong, C.; Shang, J.; Yang, W.; Chen, Y.; Zhou, J.; Ai, W.; Wang, Y.; Feng, S.; Zhang, H.; et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223. [Google Scholar] [CrossRef]
- Liu, X.G.; Li, Z.Y. Electric Field and Strain Effect on Graphene-MoS2 Hybrid Structure: Ab Initio Calculations. J. Phys. Chem. Lett. 2015, 6, 3269–3275. [Google Scholar] [CrossRef]
- Wang, Y.S.; Song, N.H.; Yang, X.H.; Zhang, J.; Xu, B.; Li, M.; Zheng, Y.F.; Yang, D.P. Tailoring the electronic properties of graphyne/blue phosphorene heterostructure via external electric field and vertical strain. Chem. Phys. Lett. 2019, 730, 277–282. [Google Scholar] [CrossRef]
- Jia, X.M.; Cao, J.; Lin, H.L.; Zhang, M.Y.; Guo, X.M.; Chen, S.F. Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: A case study of I-BiOCl/I-BiOBr. Appl. Catal. B-Environ. 2017, 204, 505–514. [Google Scholar] [CrossRef]
- Liao, C.S.; Yu, Z.L.; He, P.B.; Zhao, Y.Q.; Liu, B.; Cai, M.Q. Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der waals heterostructure: A transition from type I to type II. J. Power Sources 2020, 478, 229078. [Google Scholar] [CrossRef]
- Zhong, D.; Seyler, K.L.; Linpeng, X.Y.; Wilson, N.P.; Taniguchi, T.; Watanabe, K.; McGuire, M.A.; Fu, K.M.C.; Xiao, D.; Yao, W.; et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 2020, 15, 187–191. [Google Scholar] [CrossRef]
- Cho, C.; Wong, J.; Taqieddin, A.; Biswas, S.; Aluru, N.R.; Nam, S.; Atwater, H.A. Highly Strain-Tunable Interlayer Excitons in MoS2/WSe2 Heterobilayers. Nano Lett. 2021, 21, 3956–3964. [Google Scholar] [CrossRef]
- Susarla, S.; Manimunda, P.; Jaques, Y.M.; Hachtel, J.A.; Idrobo, J.C.; Amnulla, S.A.S.; Galvao, D.S.; Tiwary, C.S.; Ajayan, P.M. Deformation Mechanisms of Vertically Stacked WS2/MoS2 Heterostructures: The Role of Interfaces. ACS Nano 2018, 12, 4036–4044. [Google Scholar] [CrossRef]
- Zhan, H.; Guo, D.; Xie, G.X. Two-Dimensional Layered Materials: From Mechanical and Coupling Properties towards Applications in Electronics. Nanoscale 2019, 11, 13181–13212. [Google Scholar] [CrossRef]
- Peng, Z.; Chen, X.; Fan, Y.; Srolovitz, D.J.; Lei, D. Strain Engineering of 2D Semiconductors and Graphene: From Strain Fields to Band-Structure Tuning and Photonic Applications. Light Sci. Appl. 2020, 9, 190. [Google Scholar] [CrossRef]
- Carrascoso, F.; Li, H.; Frisenda, R.; Castellanos-Gomez, A. Strain engineering in single-, bi-and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021, 14, 1698–1703. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H.S.; Steele, G.A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef]
- Modtland, B.J.; Navarro-Moratalla, E.; Ji, X.; Baldo, M.; Kong, J. Monolayer tungsten disulfide (WS2) via chlorine-driven chemical vapor transport. Small 2017, 13, 1701232. [Google Scholar] [CrossRef]
- Li, X.; Lin, M.-W.; Lin, J.; Huang, B.; Puretzky, A.A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S.T.; Chi, M.; et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016, 2, e1501882. [Google Scholar] [CrossRef]
- Zhang, J.; Du, L.; Feng, S.; Zhang, R.-W.; Cao, B.; Zou, C.; Chen, Y.; Liao, M.; Zhang, B.; Yang, S.A.; et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226. [Google Scholar] [CrossRef]
- Tyurnina, A.V.; Bandurin, D.A.; Khestanova, E.; Kravets, V.G.; Koperski, M.; Guinea, F.; Grigorenko, A.N.; Geim, A.K.; Grigorieva, I.V. Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 2019, 6, 516–524. [Google Scholar] [CrossRef]
- Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A.K.; Grigorieva, I.V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016, 7, 12587. [Google Scholar] [CrossRef]
- Lan, C.Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974–5980. [Google Scholar] [CrossRef]
- Oh, H.M.; Han, G.H.; Kim, H.; Bae, J.J.; Jeong, M.S.; Lee, Y.H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236. [Google Scholar] [CrossRef]
- Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J.H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z.; Li, X.; Yu, H.; Zhu, X.; Yang, R.; Shi, D.; et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635. [Google Scholar] [CrossRef]
- Dobusch, L.; Schuler, S.; Perebeinos, V.; Mueller, T. Thermal light emission from monolayer MoS2. Adv. Mater. 2017, 29, 1701304. [Google Scholar] [CrossRef]
- Hu, Z.; Bao, Y.; Li, Z.; Gong, Y.; Feng, R.; Xiao, Y.; Wu, X.; Zhang, Z.; Zhu, X.; Ajayan, P.M.; et al. Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer heterostructures. Sci. Bull. 2017, 62, 16–21. [Google Scholar] [CrossRef]
- He, Z.; Guo, Z.; Zhong, X.; Chen, X.; Xue, J.; Wang, X.; Chen, Y. Spectroscopic investigation of defects mediated oxidization of single-layer MoS2. Sci. Chi. Technol. Sci. 2021, 64, 611–619. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef]
- Berkdemir, A.; Gutiérrez, H.R.; Botello-Méndez, A.R.; Perea-López, N.; Elías, A.L.; Chia, C.-I.; Wang, B.; Crespi, V.H.; López-Urías, F.; Charlier, J.-C.; et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755. [Google Scholar] [CrossRef]
- Pak, S.; Lee, J.; Lee, Y.-W.; Jang, A.-R.; Ahn, S.; Ma, K.Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H.Y.; et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 2017, 17, 5634–5640. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Xiong, W.; Liu, Y.; Yang, D.; Zhang, X.; Xu, J.J. Strain regulated interlayer coupling in WSe2/WS2 heterobilayer. Nanotechnology 2021, 33, 085705. [Google Scholar] [CrossRef]
- Nayak, P.K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J.U.; Ma, K.Y.; Jang, A.R.; Lim, H.; Kim, D.; Ryu, S.; et al. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. ACS Nano 2017, 11, 4041–4050. [Google Scholar] [CrossRef]
- Yan, P.; Wang, J.; Yang, G.; Lu, N.; Chu, G.; Zhang, X.; Shen, X. Microstructures. Chemical vapor deposition of monolayer MoS2 on sapphire, Si and GaN substrates. Superlattices Microstruct. 2018, 120, 235–240. [Google Scholar] [CrossRef]
- Qi, J.J.; Lan, Y.W.; Stieg, A.Z.; Chen, J.H.; Zhong, Y.L.; Li, L.J.; Chen, C.D.; Zhang, Y.; Wang, K.L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430. [Google Scholar] [CrossRef]
- Lee, H.; Koo, Y.; Choi, J.; Kumar, S.; Lee, H.-T.; Ji, G.; Choi, S.H.; Kang, M.; Kim, K.K.; Park, H.-R.; et al. Drift-dominant exciton funneling and trion conversion in 2D semiconductors on the nanogap. Sci. Adv. 2022, 8, eabm5236. [Google Scholar] [CrossRef]
- Koo, Y.; Lee, H.; Ivanova, T.; Kefayati, A.; Perebeinos, V.; Khestanova, E.; Kravtsov, V.; Park, K.-D. Tunable interlayer excitons and switchable interlayer trions via dynamic near-field cavity. Light Sci. Appl. 2023, 12, 59. [Google Scholar] [CrossRef]
- Dou, X.M.; Ding, K.; Jiang, D.S.; Sun, B.Q. Tuning and Identification of Interband Transitions in Monolayer and Bilayer Molybdenum Disulfide Using Hydrostatic Pressure. ACS Nano 2014, 8, 7458–7464. [Google Scholar] [CrossRef]
- Fu, L.; Wan, Y.; Tang, N.; Ding, Y.M.; Gao, J.; Yu, J.C.; Guan, H.M.; Zhang, K.; Wang, W.Y.; Zhang, C.F.; et al. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure. Sci. Adv. 2017, 3, e1700162. [Google Scholar] [CrossRef]
- Xia, J.; Yan, J.; Wang, Z.; He, Y.; Gong, Y.; Chen, W.; Sum, T.C.; Liu, Z.; Ajayan, P.M.; Shen, Z. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat. Phys. 2021, 17, 92–98. [Google Scholar] [CrossRef]
- Li, G.H.; Goni, A.R.; Syassen, K.; Brandt, O.; Ploog, K. State Mixing In InAs/GaAs Quantum Dots At The Pressure-Induced Gamma-X Crossing. Phys. Rev. B 1994, 50, 18420–18425. [Google Scholar] [CrossRef]
- Mattila, T.; Wei, S.H.; Zunger, A. Localization and anticrossing of electron levels in GaAs1−xNx alloys. Phys. Rev. B 1999, 60, 11245–11248. [Google Scholar] [CrossRef]
- Shan, W.; Walukiewicz, W.; Ager, J.W.; Haller, E.E.; Geisz, J.F.; Friedman, D.J.; Olson, J.M.; Kurtz, S.R. Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 1999, 82, 1221–1224. [Google Scholar] [CrossRef]
- Walukiewicz, W.; Shan, W.; Yu, K.M.; Ager, J.W.; Haller, E.E.; Miotkowski, I.; Seong, M.J.; Alawadhi, H.; Ramdas, A.K. Interaction of localized electronic states with the conduction band: Band anticrossing in II-VI semiconductor ternaries. Phys. Rev. Lett. 2000, 85, 1552–1555. [Google Scholar] [CrossRef]
- Wu, J.; Shan, W.; Walukiewicz, W.; Yu, K.M.; Ager, J.W.; Haller, E.E.; Xin, H.P.; Tu, C.W. Effect of band anticrossing on the optical transitions in GaAs1−xNx/GaAs multiple quantum wells. Phys. Rev. B 2001, 64, 085320. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager, J.W.; Haller, E.E.; Hong, Y.G.; Xin, H.P.; Tu, C.W. Band anticrossing in GaP1−xNx alloys. Phys. Rev. B 2002, 65, 241303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, W.; Ren, Z.; Chen, P.; Cui, J.; Chen, Y.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Fu, Y.; et al. Excitonic Evolution in WS2/MoS2 van der Waals Heterostructures Turned by Out-of-Plane Localized Pressure. Appl. Sci. 2024, 14, 2179. https://doi.org/10.3390/app14052179
Kong W, Ren Z, Chen P, Cui J, Chen Y, Wu J, Li Y, Liu W, Li P, Fu Y, et al. Excitonic Evolution in WS2/MoS2 van der Waals Heterostructures Turned by Out-of-Plane Localized Pressure. Applied Sciences. 2024; 14(5):2179. https://doi.org/10.3390/app14052179
Chicago/Turabian StyleKong, Weihu, Zeqian Ren, Peng Chen, Jinxiang Cui, Yili Chen, Jizhou Wu, Yuqing Li, Wenliang Liu, Peng Li, Yongming Fu, and et al. 2024. "Excitonic Evolution in WS2/MoS2 van der Waals Heterostructures Turned by Out-of-Plane Localized Pressure" Applied Sciences 14, no. 5: 2179. https://doi.org/10.3390/app14052179
APA StyleKong, W., Ren, Z., Chen, P., Cui, J., Chen, Y., Wu, J., Li, Y., Liu, W., Li, P., Fu, Y., & Ma, J. (2024). Excitonic Evolution in WS2/MoS2 van der Waals Heterostructures Turned by Out-of-Plane Localized Pressure. Applied Sciences, 14(5), 2179. https://doi.org/10.3390/app14052179