An Improved Winkler Foundation Modulus for a Beam in a Full Space
Abstract
:1. Introduction
2. The Formula of the Winkler Foundation Modulus
2.1. Beam Bending Response of the Beam on a Winkler Foundation
2.2. Beam Bending Response of the Beam on a Three-Dimensional Elastic Foundation
2.2.1. The Elastic Foundation under the Double Cosine Load
2.2.2. The Response of the Foundation under a Single Cosine Load
2.2.3. The Response of the Beam under Unit Bar Displacement
2.3. The Fitting Expression of the Winkler Foundation Modulus
3. Verification
3.1. Numerical Verification
3.2. Comparison with Previous Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winkler, E. Die Lehre von der Elastizität und Festigkeit; Dominicus: Prague, Czech Republic, 1867. [Google Scholar]
- Xu, Z.; Li, J.Q. Application of K30 test method in engineering survey of rock-soil for Shenzhen Metro. J. Railw. Eng. Soc. 2007, 12, 90–94. (In Chinese) [Google Scholar]
- Cheng, D.A.; Mao, J.F. Test methods for laboratory foundation bed coefficient. Chin. J. Geotech. Eng. 2011, 33, 281–284. (In Chinese) [Google Scholar]
- Zhang, W.; Zhang, B.; Zhang, S.Q. Evaluating coefficient of subgrade reaction by statically tests and its application. Geotech. Eng. Tech. 2016, 30, 78–84. (In Chinese) [Google Scholar]
- Zhang, J.J.; Guo, Z.; Zhang, L.H. The research on test method of laboratory subgrade coefficient. Geotech. Eng. Tech. 2017, 31, 289–293. (In Chinese) [Google Scholar]
- Li, W.; Igoe, D.; Gavin, K. Evaluation of CPT-based P—Y models for laterally loaded piles in siliceous sand. Geotech. Lett. 2014, 4, 110–117. [Google Scholar] [CrossRef]
- Dash, S.R.; Bhattacharya, S. Experimental p-y curves for liquefied soils from centrifuge tests. Earthq. Eng. Eng. Vib. 2021, 20, 863–876. [Google Scholar] [CrossRef]
- Vakili, A.; Zomorodian, S.M.A.; Totonchi, A. Small scale medel test on lateral behaviors of pile group in loose silica sand. Acta Geotech. Slov. 2021, 18, 41–54. [Google Scholar] [CrossRef]
- Siemaszko, P.; Meyer, Z. Static load test cure analysis based on soil field investigations. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 329–337. [Google Scholar]
- Santrac, P.; Susic, N.; Bajic, Z. Determination of the Pile Stiffness Matrix Based on the Pile Load Test Results and the Effect of Pile Interaction. Teh. Vjesn. 2020, 27, 2016–2023. [Google Scholar]
- Sheldon, T.; Sezen, H.; Moore, D. Beam-on-Springs Modeling of Jointed Pipe Culverts. J. Perform. Constr. Facil. 2016, 30, 04015002. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, G.Y.; Gao, M. Discussion on the calculation method of coefficient of subgrade reaction. Chin. J. Undergr. Space Eng. 2011, 7, 812–818. (In Chinese) [Google Scholar]
- Li, Y.M.; Wang, L.; Liu, Y.B.; Liu, L.P. Analysis of methods for determining the spring constant of ground foundation in seismic design of underground structures. J. Earthq. Eng. Eng. Vib. 2012, 32, 106–113. [Google Scholar]
- Biot, M.A. Bending of an infinite beam on an elastic foundation. J. Appl. Mech. ASME 1937, 59, A1–A7. [Google Scholar] [CrossRef]
- Terzaghi, K. Evalution of conefficients of subgrade reaction. Geotechnique 1955, 5, 297–326. [Google Scholar] [CrossRef]
- Vesic, A.B. Bending of beams resting on isotropic elastic solid. J. Eng. Mech. Div. 1961, 87, 35–53. [Google Scholar] [CrossRef]
- Daloglu, A.T.; Vallabhan, C. Values of k for slab on Winkler foundation. J. Geotech. Geoenviron. Eng. 2000, 126, 463–471. [Google Scholar] [CrossRef]
- Klar, A.; Vorster, T.; Soga, K.; Mair, R.J. Soil—Pipe interaction due to tunnelling: Comparison between Winkler and elastic continuum solutions. Geotechnique 2005, 55, 461–466. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, C.; Huang, M. Soil—Pipe interaction due to tunnelling: Assessment of Winkler modulus for underground pipelines. Comput. Geotech. 2013, 50, 17–28. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, C.; Huang, M. Subgrade modulus of underground pipelines subjucted to soil movements. Chinses J. Rock Mech. Eng. 2012, 31, 123–132. (In Chinese) [Google Scholar]
- Zhao, M.; Jiao, H.; Huang, J.; Li, H.; Du, X.; Wang, J. Analytical solutions for circular tunnels under longitudinally propagating shear waves based on improved foundation beam models considering tangential interaction. Tunn. Undergr. Space Technol. 2022, 123, 104444. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H.; Huang, J.; Du, X.; Wang, J.; Yu, H. Analytical solutions considering tangential contact conditions for circular lined tunnels under longitudinally propagating shear waves. Comput. Geotech. 2021, 137, 104301. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Wang, Y.; Ai, Y.B. Analytical solution to interaction between pipelines and soils under arbitrary loads. Chin. J. Geotech. Eng. 2010, 32, 1189–1193. (In Chinese) [Google Scholar]
- Zhao, M.; Xu, L.; Huang, J.; Du, X.; Li, H. Analytical solutions of the tunnels under the fault creeping by elastic foundation beam model with considering tangential interaction. Soil Dyn. Earthq. Eng. 2023, 172, 108047. [Google Scholar] [CrossRef]
m | bξ | |
---|---|---|
0.01 | 35.72 | 0.032 |
0.025 | 16.73 | 0.067 |
0.04 | 11.43 | 0.098 |
0.05 | 9.39 | 0.119 |
0.07 | 6.94 | 0.161 |
0.1 | 5.06 | 0.220 |
0.12 | 4.4 | 0.253 |
0.2 | 2.81 | 0.396 |
0.25 | 2.27 | 0.490 |
1 | 0.57 | 1.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zhao, M.; Huang, J.; Li, H.; Du, X.; Zhao, X.; Cao, S. An Improved Winkler Foundation Modulus for a Beam in a Full Space. Appl. Sci. 2024, 14, 2277. https://doi.org/10.3390/app14062277
Xu L, Zhao M, Huang J, Li H, Du X, Zhao X, Cao S. An Improved Winkler Foundation Modulus for a Beam in a Full Space. Applied Sciences. 2024; 14(6):2277. https://doi.org/10.3390/app14062277
Chicago/Turabian StyleXu, Lihui, Mi Zhao, Jingqi Huang, Huifang Li, Xiuli Du, Xu Zhao, and Shengtao Cao. 2024. "An Improved Winkler Foundation Modulus for a Beam in a Full Space" Applied Sciences 14, no. 6: 2277. https://doi.org/10.3390/app14062277
APA StyleXu, L., Zhao, M., Huang, J., Li, H., Du, X., Zhao, X., & Cao, S. (2024). An Improved Winkler Foundation Modulus for a Beam in a Full Space. Applied Sciences, 14(6), 2277. https://doi.org/10.3390/app14062277