Adsorption of Ammonium, Nitrate, and Phosphate on Hydrochars and Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. BC and HC Preparation
2.2. Characterisation of BCs and HCs
2.3. Adsorption of NH4+, NO3−, and PO43−
2.3.1. Analysis of NH4+, NO3−, and PO43−
2.3.2. pH Effect
2.3.3. Adsorption Isotherms
3. Results and Discussion
3.1. BC and HC Characteristics
3.2. Zeta Potential
3.3. Adsorption of Ammonium
3.4. Adsorption of Nitrate
3.5. Adsorption of Phosphate
3.6. Adsorption Thermodynamics
3.7. Comparison with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar]
- Atallah, E.; Kwapinski, W.; Ahmad, M.N.; Leahy, J.J.; Zeaiter, J. Effect of water-sludge ratio and reaction time on the hydrothermal carbonization of olive oil mill wastewater treatment: Hydrochar characterization. J. Water Process Eng. 2019, 31, 100813. [Google Scholar] [CrossRef]
- Paulo, A.T.; Higa, A.R.; Jeferson, D.; Salvio, M.A.; Rosana Clara Vitoria, H. Biochar: Reality and potential use in forestry. Cienc. Florest. 2018, 28, 875–887. [Google Scholar]
- Lua, A.C.; Yang, T.; Guo, J. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J. Anal. Appl. Pyrolysis 2004, 72, 279–287. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A Synthesis of its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.; et al. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Morales, M.M.; Comerford, N.; Guerrini, I.A.; Falcão, N.P.S.; Reeves, J.B. Sorption and desorption of phosphate on biochar and biochar-soil mixtures. Soil Use Manag. 2013, 29, 306–314. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 2011, 25, 1802–1810. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef]
- Mengistu, D.; Nilsen, V.; Heistad, A.; Kvaal, K. Detection and quantification of tire particles in sediments using a combination of simultaneous thermal analysis, fourier transform infra-red, and parallel factor analysis. Int. J. Environ. Res. Public Health 2019, 16, 3444. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Shen, F.; Yang, G.; Zhang, Y.; Zeng, Y.; Wang, L.; Xiao, H.; Deng, S. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere 2015, 119, 646–653. [Google Scholar] [CrossRef]
- Hale, S.E.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.D.; Cornelissen, G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef]
- Trazzi, P.A.; Leahy, J.J.; Hayes, M.H.B.; Kwapinski, W. Adsorption and desorption of phosphate on biochars. J. Environ. Chem. Eng. 2016, 4, 37–46. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Shiono, T.; Shinogi, Y. Influence of Sugarcane Bagasse-derived Biochar Application on Nitrate Leaching in Calcaric Dark Red Soil. J. Environ. Qual. 2012, 41, 1131–1137. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yuan, J.; Hu, M. Adsorption of ammonium from aqueous solutions on environmentally friendly barbecue bamboo charcoal: Characteristics and kinetic and thermodynamic studies. Environ. Prog. Sustain. Energy 2015, 34, 655–662. [Google Scholar] [CrossRef]
- Parvage, M.M.; Ulén, B.; Eriksson, J.; Strock, J.; Kirchmann, H. Phosphorus availability in soils amended with wheat residue char. Biol. Fertil. Soils 2013, 49, 245–250. [Google Scholar] [CrossRef]
- Dai, L.; Wu, B.; Tan, F.; He, M.; Wang, W.; Qin, H.; Tang, X.; Zhu, Q.; Pan, K.; Hu, Q. Engineered hydrochar composites for phosphorus removal/recovery: Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresour. Technol. 2014, 161, 327–332. [Google Scholar] [CrossRef]
- ICS 75.160.10, DD CEN/TS 14774-3:2009; Solid biofuels—Methods for the Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample. Comite Europeen de Normalisation: Brussels, Belgium, 2009.
- ICS 75.160.10, DD CEN/TS 14775:2009; Solid Biofuels—Determination of Ash Content. Comite Europeen de Normalisation: Brussels, Belgium, 2009.
- ICS 75.160.10, DD CEN/TS 15148:2009; Solid Biofuels—Determination of the Content of Volatile Matter. Comite Europeen de Normalisation: Brussels, Belgium, 2009.
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. für Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes MH, B.; Kwapiński, W.; Hubicki, Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Fang, J.; Gao, B.; Chen, J.; Zimmerman, A.R. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chem. Eng. J. 2015, 267, 253–259. [Google Scholar] [CrossRef]
- Poerschmann, J.; Weiner, B.; Wedwitschka, H.; Zehnsdorf, A.; Koehler, R.; Kopinke, F.-D. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii. Bioresour. Technol. 2015, 189, 145–153. [Google Scholar] [CrossRef]
- Reza, M.T.; Rottler, E.; Tölle, R.; Werner, M.; Ramm, P.; Mumme, J. Production, characterization, and biogas application of magnetic hydrochar from cellulose. Bioresour. Technol. 2015, 186, 34–43. [Google Scholar] [CrossRef]
- Jamilatun, S.; Amelia, S.; Pitoyo, J.; Ma’Arif, A.; Mufandi, I. Preparation and characteristics of effective biochar derived from sugarcane bagasse as adsorbent. Int. J. Renew. Ener. Res. 2023, 13, 673–680. [Google Scholar]
- Melligan, F.; Dussan, K.; Auccaise, R.; Novotny, E.H.; Leahy, J.J.; Hayes, M.H.B.; Kwapinski, W. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus. Bioresour. Technol. 2012, 108, 258–263. [Google Scholar] [CrossRef]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Brown, R. Biochar for Environmental Management. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2012. [Google Scholar]
- Fuertes, A.B.; Arbestain, M.C.; Sevilla, M.; Maciá-Agulló, J.A.; Fiol, S.; López, R.; Smernik, R.J.; Aitkenhead, W.P.; Arce, F.; Macias, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 2010, 48, 618–626. [Google Scholar] [CrossRef]
- Zhang, Q. Production of Fuel Ethanol from Hydrotherm-Pretreated Corn Stover by Pichia stipitis. Adv. Mater. Res. 2013, 641–642, 943–946. [Google Scholar] [CrossRef]
- Grams, J. Surface analysis of solid products of thermal treatment of lignocellulosic biomass. J. Anal. Sci. 2022, 161, 105429. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.D.; Li, T.G.; Zhao, F.L.; He, Z.L.; Zhao, H.P.; Yang, X.E.; Wang, H.L.; Zhao, J.; Rafiq, M.T. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang Univ. Sci. B 2013, 14, 1152. [Google Scholar] [CrossRef]
- Halajnia, A.; Oustan, S.; Najafi, N.; Khataee, A.R.; Lakzian, A. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl. Clay Sci. 2013, 80–81, 305–312. [Google Scholar] [CrossRef]
- Liu, H.; Dong, Y.; Wang, H.; Liu, Y. Ammonium adsorption from aqueous solutions by strawberry leaf powder: Equilibrium, kinetics and effects of coexisting ions. Desalination 2010, 263, 70–75. [Google Scholar] [CrossRef]
- Wahab, M.A.; Boubakri, H.; Jellali, S.; Jedidi, N. Characterization of ammonium retention processes onto cactus leaves fibers using FTIR, EDX and SEM analysis. J. Hazard. Mater. 2012, 241–242, 101–109. [Google Scholar] [CrossRef]
- Tong, X.J.; Li, J.Y.; Yuan, J.H.; Xu, R.K. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 2011, 172, 828–834. [Google Scholar] [CrossRef]
- Xu, R.K.; Xiao, S.C.; Yuan, J.H.; Zhao, A.Z. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour. Technol. 2011, 102, 10293–10298. [Google Scholar] [CrossRef]
- Zakutevskyy, O.; Shaposhnikova, T.; Kotynska, L.; Biedrzycka, A.; Skwarek, E. Sorption of ammonium and phosphate ions from aqueous solutions by carbon and mineral sorbents. Physicochem. Probl. Miner. Process. 2022, 58, 150285. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Atif, M.; Prasad, B.; Mishra, I.M. Adsorption of zinc using tea factory waste: Kinetics, equilibrium and thermodynamics. Clean Soil Air Water 2008, 36, 320–329. [Google Scholar] [CrossRef]
- Peng, F.; He, P.W.; Luo, Y.; Lu, X.; Liang, Y.; Fu, J. Adsorption of Phosphate by Biomass Char Deriving from Fast Pyrolysis of Biomass Waste. Clean Soil Air Water 2012, 40, 493–498. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Kilpimaa, S.; Runtti, H.; Kangas, T.; Lassi, U.; Kuokkanen, T. Removal of phosphate and nitrate over a modified carbon residue from biomass gasification. Chem. Eng. Res. Des. 2014, 92, 1923–1933. [Google Scholar] [CrossRef]
- Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 17, 10104–10137. [Google Scholar] [CrossRef]
- Singh, K.; Dixit, U.; Mohan, S. Comparative study of adsorption, kinetics, and thermodynamics of selected cationic and anionic surfactants on ultrasound-assisted bagasse. Water Air Soil Pollut. 2024, 235, 10. [Google Scholar] [CrossRef]
- Vu, T.M.; Nguyen, T.M.P.; Van, H.T.; Hoang, V.H.; Nga, L.T.Q.; Hoang, L.P.; Ravindran, B. High removal efficiency of ammonium from aqueous solution by colloidal silver nanoparticles: Batch adsorption. Urban Water J. 2023. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Xu, Z.; Cao, X.; Song, J.; Huang, W.; Ge, X.; Wang, H. Adsorption of nitrate and ammonium from water simultaneously using composite adsorbents constructed with functionalized biochar and modified zeolite. Water Air Soil Pollut. 2021, 232, 198. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Z.; Liu, M.; Bai, B.; Zhang, C. Nitrate-nitrogen adsorption characteristics and mechanisms of various garden waste biochars. Materials 2023, 16, 5726. [Google Scholar] [CrossRef]
- Allahkarami, E.; Azadmehr, A.; Noroozi, F.; Farrokhi, S.; Sillanpää, M. Nitrate adsorption onto surface-modified red mud in batch and fixed-bed column systems: Equilibrium, kinetic, and thermodynamic studies. Environ. Sci. Pollut. Res. 2022, 29, 48438–48452. [Google Scholar] [CrossRef]
- Bahrami, M.; Amiri, M.J. Nitrate removal from contaminated waters using modified rice husk ash by Hexadecyltrimethylammonium bromide surfactant. React. Kinet. Mech. Catal. 2022, 135, 459–478. [Google Scholar]
- Saleh, M.; Alterkaoui, A.; Ozdemir, N.C.; Arslan, H.; Bilici, Z.; Dizge, N. Adsorption of phosphate ions and reactive red 180 from aqueous solution using thermally activated lemon peels waste. Int. J. Environ. Sci. Technol. 2024, 21, 1683–1696. [Google Scholar] [CrossRef]
- Eskikaya, O.; Arslan, H.; Gun, M.; Bouchareb, R.; Dizge, N. Adsorption of Direct Orange 46 and phosphate ions on waste tomato stem ash used as a bio-based adsorbent. Environ. Prog. Sustain. Energy 2023, 42, e14192. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, Y.; Xiao, S. Adsorption behaviors and mechanisms of Al-Fe dual-decorated biochar adsorbent for phosphate removal from rural wastewater. J. Dispers. Sci. Technol. 2023, 44, 2520–2531. [Google Scholar] [CrossRef]
- Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229–230, 292–297. [Google Scholar]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides. J. Colloid Interface Sci. 2005, 290, 45–51. [Google Scholar] [CrossRef]
- Takaya, C.A.; Parmar, K.R.; Fletcher, L.A.; Ross, A.B. Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia. Agriculture 2019, 9, 16. [Google Scholar] [CrossRef]
- Gao, F.; Xue, Y.; Deng, P.; Cheng, X.; Yang, K. Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Fan, X.; Tsang, D.C.W.; Li, G.; Shen, Y. Corn waste valorization to generate activated hydrochar to recover ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment. J. Environ. Manag. 2019, 236, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Bakly, S.; Al-Juboori, R.A.; Bowtell, L. Macadamia Nutshell Biochar for Nitrate Removal: Effect of Biochar Preparation and Process Parameters. C 2019, 5, 47. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y.; Shiono, T. Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Sci. Plant Nutr. 2016, 62, 180–184. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Zhang, D.; Wu, M.; Pan, B. Limited role of biochars in nitrogen fixation through nitrate adsorption. Sci. Total Environ. 2017, 592, 758–765. [Google Scholar] [CrossRef]
- Hafshejani, L.D.; Hooshmand, A.; Naseri, A.A.; Mohammadi, A.S.; Abbasi, F.; Bhatnagar, A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol. Eng. C 2016, 95, 101–111. [Google Scholar] [CrossRef]
- Xue, Y.; Hou, H.; Zhu, S. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J. Hazard. Mater. 2009, 162, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Spataru, A.; Spataru, A.; Jain, R.; Chung, J.W.; Gerner, G.; Krebsc, R.; Lens PN, L. Enhanced adsorption of orthophosphate and copper onto hydrochar derived from sewage sludge by KOH activation. RSC Adv. 2016, 6, 101827–101834. [Google Scholar] [CrossRef]
- Novais, S.V.; Zenero, M.D.O.; Barreto MS, C.; Montes, C.R.; Cerri, C.E.P. Phosphorus removal from eutrophic water using modified biochar. Sci. Total Environ. 2018, 633, 825–835. [Google Scholar] [CrossRef] [PubMed]
Ultimate Analysis wt.% | Atomic Ratios | BET Surface Area m2/g | Pore Volume cm3/g | Proximate Analysis wt.% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Material | N | C | H | S | O | C/N | H/C | O/C | Ash | Volatile Matter | Fixed Carbon | ||
HC30 | 0.49 | 67.2 | 6.15 | 0.0 | 19.9 | 138 | 0.092 | 0.297 | 1.4 | 0.004 | 4.83 | 48.8 | 46.4 |
HC180 | 0.36 | 65.2 | 5.77 | 0.0 | 21.2 | 179 | 0.088 | 0.325 | 1.8 | 0.004 | 6.30 | 45.9 | 47.8 |
BC300 | 0.39 | 56.4 | 5.67 | 0.0 | 28.3 | 145 | 0.100 | 0.502 | 2.4 | 0.003 | 6.30 | 58.7 | 35.0 |
BC500 | 0.57 | 69.1 | 2.96 | 0.0 | 13.7 | 121 | 0.043 | 0.199 | 80.4 | 0.032 | 10.1 | 15.8 | 74.2 |
BC700 | 0.54 | 76.3 | 1.37 | 0.0 | 0.97 | 142 | 0.018 | 0.013 | 84.3 | 0.030 | 17.8 | 5.72 | 76.5 |
AC | 0.48 | 86.1 | 0.30 | 0.0 | 6.51 | 179 | 0.003 | 0.076 | 400 | 1.365 | 3.60 | 4.44 | 92.0 |
System | Material | ||||||
---|---|---|---|---|---|---|---|
BC300 | BC500 | BC700 | HC30 | HC180 | AC | ||
Ammonium | |||||||
Freundlich | KF | 1.177 | 1.016 | 0.755 | 0.192 | 0.186 | 1.117 |
n | 2.737 | 2.700 | 2.502 | 2.187 | 2.134 | 2.778 | |
R2 | 0.886 | 0.846 | 0.896 | 0.866 | 0.944 | 0.886 | |
Langmuir | q0 | 9.833 | 8.183 | 8.137 | 2.970 | 3.434 | 9.050 |
KL | 0.028 | 0.032 | 0.020 | 0.016 | 0.012 | 0.029 | |
R2 | 0.968 | 0.946 | 0.980 | 0.975 | 0.993 | 0.967 | |
Nitrate | |||||||
Freundlich | KF | 0.036 | 0.073 | 0.091 | 0.033 | 0.093 | 0.093 |
n | 1.565 | 1.583 | 1.632 | 1.971 | 1.523 | 1.539 | |
R2 | 0.688 | 0.674 | 0.651 | 0.826 | 0.748 | 0.708 | |
Langmuir | q0 | 1.637 | 3.051 | 3.261 | 0.698 | 1.399 | 4.529 |
KL | 0.008 | 0.009 | 0.010 | 0.013 | 0.007 | 0.008 | |
R2 | 0.879 | 0.880 | 0.871 | 0.953 | 0.902 | 0.893 | |
Phosphate | |||||||
Freundlich | KF | 0.119 | 0.272 | 0.301 | 0.033 | 0.098 | 0.477 |
n | 1.992 | 2.147 | 2.193 | 1.971 | 2.107 | 2.092 | |
R2 | 0.829 | 0.809 | 0.860 | 0.826 | 0.805 | 0.832 | |
Langmuir | q0 | 2.413 | 4.184 | 4.699 | 0.698 | 1.615 | 8.292 |
KL | 0.013 | 0.017 | 0.014 | 0.013 | 0.016 | 0.014 | |
R2 | 0.955 | 0.948 | 0.956 | 0.953 | 0.947 | 0.943 |
Carbonaceous Materials | Conditions for the Adsorbent | Adsorbed Ion | Solution Concentration mg dm−3 | Adsorption Capacity mg g−1 | Ref. |
---|---|---|---|---|---|
Oak-based HC | Hydrothermal carbonisation 250 °C | NH4+ | 43 | 6.0 | [62] |
Oak-based BC | Slow pyrolysis at 450 °C | 9.2 | |||
Slow pyrolysis at 650 °C | 8.9 | ||||
Peanut shell, corncob, or cotton stalk BC | Pyrolysis at 300, 450, or 600 °C for 2 h | NH4+ | 50 | 16–18 | [63] |
Wheat straw BC | Pyrolysis at 500 °C for 1.5 h | NH4+ | 50 | 0.33 | [37] |
Corn straw BC | 0.92 | ||||
Peanut shell BC | 0.54 | ||||
Sugarcane bagasse BC | Pyrolysis at 500 °C for 1 h | NH4+ | 50 | 4.46 | This study |
Sugarcane bagasse HC30 | Hydrothermal carbonisation at 250 °C for 30 min | 1.37 | |||
Corn cob HC | 230 or 260 °C for 30 min | NH4+ | 20–3000 | ≈34–107 | [64] |
KOH-activated HC | Corn cob HC mixed with 200 mL of 3 M KOH | ≈48–140 | |||
Oak-based hydrochar | Hydrothermal carbonisation 250 °C | NH4+ | 1000 | 109.7 | [11] |
Oak-based BC | Slow pyrolysis at 450 °C | 129.4 | |||
Slow pyrolysis at 650 °C | 123.5 | ||||
Macadamia nutshell BC | Pyrolysis at 1000 °C for 1 h | NO3− | 10 | [65] | |
Sugarcane bagasse BC | Pyrolysis at 800 °C for 2 h | NO3− | 10 | 0.06 | [66] |
Bamboo chip BC | 0.15 | ||||
Japanese cedar BC | 0.23 | ||||
Rice husk BC | 0.07 | ||||
Poultry manure BC | 0.02 | ||||
Pine sawdust BC | Pyrolysis at 500 °C for 4 h | NO3− | 30 | 0.45 | [67] |
Corn straw BC | 0.15 | ||||
Peanut hull BC | 0.38 | ||||
Rice straw BC | 0.15 | ||||
Wheat straw BC | Pyrolysis at 500 °C for 1.5 h | NO3− | 50 | 0.021 | [37] |
Corn straw BC | 0.032 | ||||
Peanut shell BC | 0.024 | ||||
Sugarcane bagasse | Feedstock | NO3− | 50 | 2.1 | [68] |
Sugarcane bagasse BC | Pyrolysis at 200 to 600 °C for 4 h | 11. 6 | |||
Modified sugarcane bagasse BC | Sugarcane bagasse BC added in epichlorohydrin and N-dimethylformamide | 28.2 | |||
Sugarcane bagasse BC | Pyrolysis at 500 °C for 1 h | NO3− | 50 | 1.34 | This study |
Sugarcane bagasse HC30 | Hydrothermal carbonisation at 250 °C for 30 min | 0.35 | |||
Pine sawdust BC | Pyrolysis at 550 °C for 15 min | PO43− | 30 | 10 | [47] |
Pyrolysis at 750 °C for 15 min | 14 | ||||
Activated carbon residue BC | Downdraft gasifier 1000 °C | PO43− | 50 | 21 | [69] |
Oak sawdust BC | Pyrolysis at 500 °C for 30 min | PO43− | 61 | 11 | [19] |
Sugarcane BC | Pyrolysis at 300 °C for 20 min | PO43− | 100 | 1.63 | [16] |
Pyrolysis at 700 °C for 20 min | 10.0 | ||||
Miscanthus BC | Pyrolysis at 300 °C for 20 min | 1.83 | |||
Pyrolysis at 700 °C for 20 min | 11.4 | ||||
Corn BC | Pyrolysis at 300 °C for 3 h | PO43− | 100 | ≈35 | [17] |
Pyrolysis at 600 °C for 3 h | ≈40 | ||||
Sugarcane bagasse BC | Pyrolysis at 500 °C for 1 h | PO43− | 100 | 2.76 | This study |
Sugarcane bagasse HC30 | Hydrothermal carbonisation at 250 °C for 30 min | 0.45 | |||
Sewage sludge HC | Hydrothermally carbonised for 5 h at 210 °C 21 and 24 bar | PO43− | 150 | 2.3 | [70] |
KOH-activated HC | Produced sewage sludge HC was washed with 1 M KOH | 14.2 | |||
Oak-based hydrochar | Hydrothermal carbonisation at 250 °C | PO43− | 400 | 26.6 | [11] |
Oak-based BC | Slow pyrolysis at 450 °C | 5.5 | |||
Slow pyrolysis at 650 °C | 3.6 | ||||
Poultry manure BC | slowly pyrolysed at 350 °C after Al doping | PO43− | 3000 | 701 | [71] |
Sugarcane BC | slowly pyrolysed at 350 °C after Al doping | 759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trazzi, P.A.; Vashishtha, M.; Najser, J.; Schmalenberger, A.; Kannuchamy, V.K.; Leahy, J.J.; Kwapinski, W. Adsorption of Ammonium, Nitrate, and Phosphate on Hydrochars and Biochars. Appl. Sci. 2024, 14, 2280. https://doi.org/10.3390/app14062280
Trazzi PA, Vashishtha M, Najser J, Schmalenberger A, Kannuchamy VK, Leahy JJ, Kwapinski W. Adsorption of Ammonium, Nitrate, and Phosphate on Hydrochars and Biochars. Applied Sciences. 2024; 14(6):2280. https://doi.org/10.3390/app14062280
Chicago/Turabian StyleTrazzi, Paulo André, Mayank Vashishtha, Jan Najser, Achim Schmalenberger, Vasanth Kumar Kannuchamy, James J. Leahy, and Witold Kwapinski. 2024. "Adsorption of Ammonium, Nitrate, and Phosphate on Hydrochars and Biochars" Applied Sciences 14, no. 6: 2280. https://doi.org/10.3390/app14062280
APA StyleTrazzi, P. A., Vashishtha, M., Najser, J., Schmalenberger, A., Kannuchamy, V. K., Leahy, J. J., & Kwapinski, W. (2024). Adsorption of Ammonium, Nitrate, and Phosphate on Hydrochars and Biochars. Applied Sciences, 14(6), 2280. https://doi.org/10.3390/app14062280