Prediction of Utility Tunnel Performance in a Soft Foundation during an Operation Period Based on Deep Learning
Abstract
:1. Introduction
2. Methodologies
2.1. Deep Belief Network (DBN)
2.2. Whale Optimization Algorithm (WOA)
2.3. Whale Optimization Deep Belief Network (WO-DBN)
2.4. Filed Test
3. Results
3.1. Construction Datasets from Field Tests Results
3.2. Process of Prediction by WO-DBN
3.3. Evaluation Index of the Prediction Model
3.4. Analysis of Predication Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Alaghbandrad, A.; Genger, T.; Hammad, A. History and recent development of multi-purpose utility tunnels. Tunn. Undergr. Space Technol. 2020, 103, 103511. [Google Scholar] [CrossRef]
- Yang, C.; Peng, F.-L. Discussion on the Development of Underground Utility Tunnels in China. Procedia Eng. 2016, 165, 540–548. [Google Scholar] [CrossRef]
- Zhou, Q.; He, H.; Liu, S.; Wang, P.; Zhou, Y.; Zhou, J.; Fan, H.; Jin, F. Evaluation of blast-resistant ability of shallow-buried rein-forced concrete urban utility tunnel. Eng. Fail. Anal. 2021, 119, 105003. [Google Scholar] [CrossRef]
- Zhou, Q.; He, H.-G.; Liu, S.-F.; Chen, X.-S.; Tang, Z.-X.; Liu, Y.; Qiu, Z.-Y.; Li, S.-S.; Wang, H.; Zhou, Y.-Z.; et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars. Def. Technol. 2020, 17, 512–530. [Google Scholar] [CrossRef]
- Pan, Y.; Zong, Z.; Li, J.; Qian, H.; Wu, C. Investigating the dynamic response of a double-box utility tunnel buried in calcareous sand against ground surface explosion. Tunn. Undergr. Space Technol. 2024, 146, 105636. [Google Scholar] [CrossRef]
- Zhao, G.; Zhu, L.; Wu, S.; Liu, W.; Duan, S. Experimental and numerical investigation on the cross-sectional mechanical behavior of prefabricated multi-cabin RC utility tunnels. Structures 2022, 42, 466–479. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Peng, C.; Lei, Y.; Zhang, A.; Zuo, Z.; Chen, Z. Experimental and Numerical Investigation into Full-Scale Model of New Type Assembled Integral Utility Tunnel. Buildings 2023, 13, 1428. [Google Scholar] [CrossRef]
- Xue, W.; Chen, S.; Wang, Q. Cyclic Loading Test Conducted on the Bottom Joints of a Hybrid Precast Utility Tunnel Composed of Double-Skin Sidewalls and a Precast Bottom Slab. Buildings 2024, 14, 341. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, G.; Li, J.; Shen, J.; Zhao, M.; Du, X. Experimental study on out-of-plane seismic performance of precast composite sidewalls of utility tunnel with grouting-sleeve joints. Undergr. Space 2024, 16, 1–17. [Google Scholar] [CrossRef]
- Xue, W.; Chen, S.; Bai, H. Pseudo-Static Tests on Top Joints of Hybrid Precast Utility Tunnel. Buildings 2023, 13, 2567. [Google Scholar] [CrossRef]
- Chen, H.; El Naggar, M.H.; Chu, J.; Li, X.; He, Q.; Wang, L.; Liu, X.; Zhou, L. Transverse response of utility tunnel under near fault ground motions: Multi-shake table array tests. Soil Dyn. Earthq. Eng. 2023, 174, 108135. [Google Scholar] [CrossRef]
- Yue, F.; Liu, B.; Zhu, B.; Jiang, X.; Chen, S.; Jaisee, S.; Chen, L.; Lv, B. Shaking table investigations on seismic performance of prefabricated corrugated steel utility tunnels. Tunn. Undergr. Space Technol. 2020, 105, 103579. [Google Scholar] [CrossRef]
- Yao, A.; Tian, T.; Gong, Y.; Li, H. Shaking Table Tests of Seismic Response of Multi-Segment Utility Tunnels in a Layered Liquefiable Site. Sustainability 2023, 15, 6030. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, J.; Dong, B.; Xu, A.; Ba, Z. Shaking table tests on the seismic performance of prefabricated T-shaped cross utility tunnel. Structures 2023, 58, 105516. [Google Scholar] [CrossRef]
- Huang, D.-L.; Zong, Z.-L.; Tao, X.-X.; Liu, Q.; Huang, Z.-Y.; Tang, A.-P. Seismic response of utility tunnel in horizontal nonhomogeneous site based on improved discrete element method. Structures 2023, 57, 105179. [Google Scholar] [CrossRef]
- Yue, F.; Liu, B.; Zhu, B.; Jiang, X.; Chen, L.; Liao, K. Shaking table test and numerical simulation on seismic performance of prefabricated corrugated steel utility tunnels on liquefiable ground. Soil Dyn. Earthq. Eng. 2020, 141, 106527. [Google Scholar] [CrossRef]
- Tsinidis, G. Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking. Tunn. Undergr. Space Technol. 2017, 62, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Meng, L. Structural behavior and soil arching state of underground corrugated steel utility tunnel. J. Constr. Steel Res. 2023, 203, 107798. [Google Scholar] [CrossRef]
- Huang, B.-T.; Zhu, J.-X.; Weng, K.-F.; Huang, J.-Q.; Dai, J.-G. Prefabricated UHPC-concrete-ECC underground utility tunnel reinforced by perforated steel plate: Experimental and numerical investigations. Case Stud. Constr. Mater. 2022, 16, e00856. [Google Scholar] [CrossRef]
- Huang, Z.; Feng, Y.; Tang, A.; Liu, Q. Influence of oblique incidence of P-waves on seismic response of prefabricated utility tunnels considering joints. Soil Dyn. Earthq. Eng. 2023, 167, 107797. [Google Scholar] [CrossRef]
- Qian, H.; Zong, Z.; Wu, C.; Li, J.; Gan, L. Numerical study on the behavior of utility tunnel subjected to ground surface explosion. Thin-Walled Struct. 2021, 161, 107422. [Google Scholar] [CrossRef]
- Yin, X.; Liu, H.; Chen, Y.; Wang, Y.; Al-Hussein, M. A BIM-based framework for operation and maintenance of utility tunnels. Tunn. Undergr. Space Technol. 2020, 97, 103252. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, F.; Yang, F.; Qian, P.; Wang, Q.; Wu, Y.; Wang, K. Generating Topologically Consistent BIM Models of Utility Tunnels from Point Clouds. Sensors 2023, 23, 6503. [Google Scholar] [CrossRef]
- Peng, F.-L.; Qiao, Y.-K.; Yang, C. A LSTM-RNN based intelligent control approach for temperature and humidity environment of urban utility tunnels. Heliyon 2023, 9, e13182. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Y.; Fang, W.; Zhou, R.; Reniers, G.; Khakzad, N. An Integrated Quantitative Risk Assessment Method for Urban Underground Utility Tunnels. Reliab. Eng. Syst. Saf. 2021, 213, 107792. [Google Scholar] [CrossRef]
- Xue, G.; Liu, S.; Ren, L.; Gong, D. Risk assessment of utility tunnels through risk interaction-based deep learning. Reliab. Eng. Syst. Saf. 2024, 241, 109626. [Google Scholar] [CrossRef]
- Ansari, A.; Rao, K.; Jain, A.; Ansari, A. Formulation of multi-hazard damage prediction (MhDP) model for tunnelling projects in earthquake and landslide-prone regions: A novel approach with artificial neural networking (ANN). J. Earth Syst. Sci. 2023, 132, 164. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Gong, B.; Shu, C.; Han, S.; Cheng, S.-G. Mine Vegetation Identification via Ecological Monitoring and Deep Belief Network. Plants 2021, 10, 1099. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, W.; Cui, S.; Zhong, X.; Hu, C.; Chen, X. Ground Settlement of High-Permeability Sand Layer Induced by Shield Tunneling: A Case Study under the Guidance of DBN. Geofluids 2020, 2020, 6617468. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, S.; Qiu, Y.; Armaghani, D.; Zhou, A.; Yong, W. Predicting tunnel squeezing using support vector machine opti-mized by whale optimization algorithm. Acta Geotech. 2022, 17, 1343–1366. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Ahmed, H.U.; Rafiq, S.K.; Ahmad, D.A. Machine learning approach for predicting compressive strength in foam concrete under varying mix designs and curing periods. Smart Constr. Sustain. Cities 2023, 1, 16. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Le, T.T.T.; Nguyen, T.G.; Tran, D.T. Prediction of underground mining-induced subsidence: Artificial neural network based approach. Min. Miner. Depos. 2023, 17, 45–52. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.S. Application of Artificial Neural Networks in Assessing Mining Subsidence Risk. Appl. Sci. 2020, 10, 1302. [Google Scholar] [CrossRef]
- Yang, T.; Wen, T.; Huang, X.; Liu, B.; Shi, H.; Liu, S.; Peng, X.; Sheng, G. Predicting Model of Dual-Mode Shield Tunneling Parameters in Complex Ground Using Recurrent Neural Networks and Multiple Optimization Algorithms. Appl. Sci. 2024, 14, 581. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q. Construction and Application of LSTM-Based Prediction Model for Tunnel Surrounding Rock Deformation. Sustainability 2023, 15, 6877. [Google Scholar] [CrossRef]
Input Variables | Output Variables | |||||
---|---|---|---|---|---|---|
Operating Time /h | Vehicle Speed /km/h | Symmetry of Vehicle Load | Magnitude of Vehicle Load /kN | Load Position /m | Vertical Displacement /mm | Horizontal Stress /kPa |
1 | 22.5 | 1 | 156.49 | 5.25 | 2.0053 | 720.342 |
1.6 | 41.25 | 1 | 169.17 | 5.25 | 2.2926 | 730.722 |
2.17 | 60 | 1 | 190.01 | 5.25 | 2.2596 | 725.702 |
1.26 | 60 | 1 | 195.81 | 5.25 | 2.4146 | 728.099 |
4.31 | 41.25 | 1 | 180.01 | 5.25 | 2.0452 | 720.963 |
4.63 | 80 | 2 | 90.01 | 6.39 | 1.8 | 391.573 |
1.17 | 41.25 | 2 | 81.25 | 7.34 | 1.17 | 303.95 |
4.06 | 80 | 2 | 100.1 | 6.39 | 2.24 | 383.41 |
1.25 | 80 | 2 | 96.58 | 6.39 | 2.76 | 340.47 |
1 | 41.25 | 2 | 96.58 | 7.34 | 2.16 | 288.28 |
Name | Field Test Datasets | Training Sets | Testing Sets |
---|---|---|---|
Number of sets | 15,376 | 12,110 | 3266 |
Parameters | n1 | n2 | n3 | n4 | η | t1 | t2 |
---|---|---|---|---|---|---|---|
Values | 44 | 47 | 34 | 18 | 0.0044 | 13 | 60 |
Indexes | RMSE | MAE | R |
---|---|---|---|
Vertical Displacement | 0.2312 | 0.1604 | 0.9742 |
Horizontal stress | 22.0217 | 12.3726 | 0.6825 |
Parameters | n1 | n2 | n3 | n4 | η | t1 | t2 |
---|---|---|---|---|---|---|---|
Values | 45 | 50 | 30 | 10 | 0.0014 | 15 | 65 |
Parameters | n1 | n2 | η | Epoch | |
---|---|---|---|---|---|
ANN | Values | 32 | 16 | 0.01 | 50 |
LSTM | Values | 16 | 8 | 0.001 | 100 |
WO-DBN | DBN | ANN | LSTM | ||
---|---|---|---|---|---|
Vertical displacement | RMSE | 0.2312 | 0.5697 | 0.6563 | 0.5595 |
MAE | 0.1604 | 0.4285 | 0.4852 | 0.3777 | |
R | 0.9742 | 0.8642 | 0.7585 | 0.8435 | |
Horizontal stress | RMSE | 22.0217 | 31.2888 | 38.1835 | 34.5109 |
MAE | 12.3726 | 24.7234 | 30.4551 | 28.2891 | |
R | 0.6825 | 0.5011 | 0.3411 | 0.5145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Ge, S.; Gao, Y.; Yuan, S. Prediction of Utility Tunnel Performance in a Soft Foundation during an Operation Period Based on Deep Learning. Appl. Sci. 2024, 14, 2334. https://doi.org/10.3390/app14062334
Gao W, Ge S, Gao Y, Yuan S. Prediction of Utility Tunnel Performance in a Soft Foundation during an Operation Period Based on Deep Learning. Applied Sciences. 2024; 14(6):2334. https://doi.org/10.3390/app14062334
Chicago/Turabian StyleGao, Wei, Shuangshuang Ge, Yangqinchu Gao, and Shuo Yuan. 2024. "Prediction of Utility Tunnel Performance in a Soft Foundation during an Operation Period Based on Deep Learning" Applied Sciences 14, no. 6: 2334. https://doi.org/10.3390/app14062334
APA StyleGao, W., Ge, S., Gao, Y., & Yuan, S. (2024). Prediction of Utility Tunnel Performance in a Soft Foundation during an Operation Period Based on Deep Learning. Applied Sciences, 14(6), 2334. https://doi.org/10.3390/app14062334