Evolutionary Computation: Theories, Techniques, and Applications
1. Introduction
2. Overview of the Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Cicirello, V.A. Cycle Mutation: Evolving Permutations via Cycle Induction. Appl. Sci. 2022, 12, 5506. https://doi.org/10.3390/app12115506.
- Osuna-Enciso, V.; Guevara-Martínez, E. A Stigmergy-Based Differential Evolution. Appl. Sci. 2022, 12, 6093. https://doi.org/10.3390/app12126093.
- Córdoba, A.T.; Gata, P.M.; Reina, D.G. Optimizing the Layout of Run-of-River Powerplants Using Cubic Hermite Splines and Genetic Algorithms. Appl. Sci. 2022, 12, 8133. https://doi.org/10.3390/app12168133.
- Parra, D.; Gutiérrez-Gallego, A.; Garnica, O.; Velasco, J.M.; Zekri-Nechar, K.; Zamorano-León, J.J.; Heras, N.d.l.; Hidalgo, J.I. Predicting the Risk of Overweight and Obesity in Madrid—A Binary Classification Approach with Evolutionary Feature Selection. Appl. Sci. 2022, 12, 8251. https://doi.org/10.3390/app12168251.
- Fan, Y.A.; Liang, C.K. Hybrid Discrete Particle Swarm Optimization Algorithm with Genetic Operators for Target Coverage Problem in Directional Wireless Sensor Networks. Appl. Sci. 2022, 12, 8503. https://doi.org/10.3390/app12178503.
- Wang, S.L.; Adnan, S.H.; Ibrahim, H.; Ng, T.F.; Rajendran, P. A Hybrid of Fully Informed Particle Swarm and Self-Adaptive Differential Evolution for Global Optimization. Appl. Sci. 2022, 12, 11367. https://doi.org/10.3390/app122211367.
- Chen, T.J.; Hong, Y.J.; Lin, C.H.; Wang, J.Y. Optimization on Linkage System for Vehicle Wipers by the Method of Differential Evolution. Appl. Sci. 2023, 13, 332. https://doi.org/10.3390/app13010332.
- Tong, B.K.B.; Sung, C.W.; Wong, W.S. Random Orthogonal Search with Triangular and Quadratic Distributions (TROS and QROS): Parameterless Algorithms for Global Optimization. Appl. Sci. 2023, 13, 1391. https://doi.org/10.3390/app13031391.
- Anđelić, N.; Baressi Šegota, S.; Glučina, M.; Car, Z. Estimation of Interaction Locations in Super Cryogenic Dark Matter Search Detectors Using Genetic Programming-Symbolic Regression Method. Appl. Sci. 2023, 13, 2059. https://doi.org/10.3390/app13042059.
- Wu, W.; Sun, X.; Man, G.; Li, S.; Bao, L. Interactive Multifactorial Evolutionary Optimization Algorithm with Multidimensional Preference Surrogate Models for Personalized Recommendation. Appl. Sci. 2023, 13, 2243. https://doi.org/10.3390/app13042243.
- Dubey, R.; Louis, S.J. Genetic Algorithms Optimized Adaptive Wireless Network Deployment. Appl. Sci. 2023, 13, 4858. https://doi.org/10.3390/app13084858.
- Lazari, V.; Chassiakos, A. Multi-Objective Optimization of Electric Vehicle Charging Station Deployment Using Genetic Algorithms. Appl. Sci. 2023, 13, 4867. https://doi.org/10.3390/app13084867.
- Reffad, H.; Alti, A. Semantic-Based Multi-Objective Optimization for QoS and Energy Efficiency in IoT, Fog, and Cloud ERP Using Dynamic Cooperative NSGA-II. Appl. Sci. 2023, 13, 5218. https://doi.org/10.3390/app13085218.
References
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Eiben, A.; Smith, J. Introduction to Evolutionary Computing, 2nd ed.; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Langdon, W.B.; Poli, R. Foundations of Genetic Programming; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. Int. J. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar] [CrossRef]
- Cicirello, V.A. A Survey and Analysis of Evolutionary Operators for Permutations. In Proceedings of the 15th International Joint Conference on Computational Intelligence, Rome, Italy, 13–15 November 2023; pp. 288–299. [Google Scholar] [CrossRef]
- Osaba, E.; Del Ser, J.; Cotta, C.; Moscato, P. Memetic Computing: Accelerating optimization heuristics with problem-dependent local search methods. Swarm Evol. Comput. 2022, 70, 101047. [Google Scholar] [CrossRef]
- Larrañaga, P.; Bielza, C. Estimation of Distribution Algorithms in Machine Learning: A Survey. IEEE Trans. Evol. Comput. 2023. early access. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Uusitalo, S.; Kantosalo, A.; Salovaara, A.; Takala, T.; Guckelsberger, C. Creative collaboration with interactive evolutionary algorithms: A reflective exploratory design study. Genet. Program. Evolvable Mach. 2023, 25, 4. [Google Scholar] [CrossRef]
- Dorigo, M.; Gambardella, L. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Dasgupta, D. Advances in artificial immune systems. IEEE Comput. Intell. Mag. 2006, 1, 40–49. [Google Scholar] [CrossRef]
- Siarry, P. (Ed.) Metaheuristics; Springer Nature: Cham, Switzerland, 2016. [Google Scholar]
- Hoos, H.H.; Stützle, T. Stochastic Local Search: Foundations and Applications; Morgan Kaufmann: San Francisco, CA, USA, 2005. [Google Scholar]
- Harada, T.; Alba, E. Parallel Genetic Algorithms: A Useful Survey. ACM Comput. Surv. 2020, 53, 86. [Google Scholar] [CrossRef]
- Cicirello, V.A. Impact of Random Number Generation on Parallel Genetic Algorithms. In Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, Melbourne, FL, USA, 21–23 May 2018; AAAI Press: Menlo Park, CA, USA, 2018; pp. 2–7. [Google Scholar]
- Luque, G.; Alba, E. Parallel Genetic Algorithms: Theory and Real World Applications; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, G. Convergence of evolutionary algorithms in general search spaces. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 50–54. [Google Scholar] [CrossRef]
- He, J.; Yao, X. Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 2001, 127, 57–85. [Google Scholar] [CrossRef]
- Karafotias, G.; Hoogendoorn, M.; Eiben, A.E. Parameter Control in Evolutionary Algorithms: Trends and Challenges. IEEE Trans. Evol. Comput. 2015, 19, 167–187. [Google Scholar] [CrossRef]
- Cicirello, V.A. On Fitness Landscape Analysis of Permutation Problems: From Distance Metrics to Mutation Operator Selection. Mob. Netw. Appl. 2023, 28, 507–517. [Google Scholar] [CrossRef]
- Pimenta, C.G.; de Sá, A.G.C.; Ochoa, G.; Pappa, G.L. Fitness Landscape Analysis of Automated Machine Learning Search Spaces. In Proceedings of the Evolutionary Computation in Combinatorial Optimization: 20th European Conference, EvoCOP 2020, Held as Part of EvoStar 2020, Seville, Spain, 15–17 April 2020; Springer: Cham, Switzerland, 2020; pp. 114–130. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Tian, F.; Meng, X. A fitness landscape ruggedness multiobjective differential evolution algorithm with a reinforcement learning strategy. Appl. Soft Comput. 2020, 96, 106693. [Google Scholar] [CrossRef]
- Jones, T.; Forrest, S. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 15–19 July 1995; pp. 184–192. [Google Scholar]
- Cicirello, V.A. The Permutation in a Haystack Problem and the Calculus of Search Landscapes. IEEE Trans. Evol. Comput. 2016, 20, 434–446. [Google Scholar] [CrossRef]
- Scott, E.O.; Luke, S. ECJ at 20: Toward a General Metaheuristics Toolkit. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019; ACM Press: New York, NY, USA, 2019; pp. 1391–1398. [Google Scholar] [CrossRef]
- Cicirello, V.A. Chips-n-Salsa: A Java Library of Customizable, Hybridizable, Iterative, Parallel, Stochastic, and Self-Adaptive Local Search Algorithms. J. Open Source Softw. 2020, 5, 2448. [Google Scholar] [CrossRef]
- Jenetics. Jenetics—Genetic Algorithm, Genetic Programming, Evolutionary Algorithm, and Multi-Objective Optimization. 2024. Available online: https://jenetics.io/ (accessed on 27 January 2024).
- Bell, I.H. CEGO: C++11 Evolutionary Global Optimization. J. Open Source Softw. 2019, 4, 1147. [Google Scholar] [CrossRef]
- Gijsbers, P.; Vanschoren, J. GAMA: Genetic Automated Machine learning Assistant. J. Open Source Softw. 2019, 4, 1132. [Google Scholar] [CrossRef]
- Detorakis, G.; Burton, A. GAIM: A C++ library for Genetic Algorithms and Island Models. J. Open Source Softw. 2019, 4, 1839. [Google Scholar] [CrossRef]
- de Dios, J.A.M.; Mezura-Montes, E. Metaheuristics: A Julia Package for Single- and Multi-Objective Optimization. J. Open Source Softw. 2022, 7, 4723. [Google Scholar] [CrossRef]
- Izzo, D.; Biscani, F. dcgp: Differentiable Cartesian Genetic Programming made easy. J. Open Source Softw. 2020, 5, 2290. [Google Scholar] [CrossRef]
- Simson, J. LGP: A robust Linear Genetic Programming implementation on the JVM using Kotlin. J. Open Source Softw. 2019, 4, 1337. [Google Scholar] [CrossRef]
- Tarkowski, T. Quilë: C++ genetic algorithms scientific library. J. Open Source Softw. 2023, 8, 4902. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Liang, J.; Ban, X.; Yu, K.; Qu, B.; Qiao, K.; Yue, C.; Chen, K.; Tan, K.C. A Survey on Evolutionary Constrained Multiobjective Optimization. IEEE Trans. Evol. Comput. 2023, 27, 201–221. [Google Scholar] [CrossRef]
- Tian, Y.; Si, L.; Zhang, X.; Cheng, R.; He, C.; Tan, K.C.; Jin, Y. Evolutionary Large-Scale Multi-Objective Optimization: A Survey. ACM Comput. Surv. 2021, 54, 174. [Google Scholar] [CrossRef]
- Li, M.; Yao, X. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey. ACM Comput. Surv. 2019, 52, 26. [Google Scholar] [CrossRef]
- Sohail, A. Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences. Ann. Data Sci. 2023, 10, 1007–1018. [Google Scholar] [CrossRef]
- Li, N.; Ma, L.; Yu, G.; Xue, B.; Zhang, M.; Jin, Y. Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Comput. Surv. 2023, 56, 41. [Google Scholar] [CrossRef]
- Telikani, A.; Tahmassebi, A.; Banzhaf, W.; Gandomi, A.H. Evolutionary Machine Learning: A Survey. ACM Comput. Surv. 2021, 54, 161. [Google Scholar] [CrossRef]
- Li, N.; Ma, L.; Xing, T.; Yu, G.; Wang, C.; Wen, Y.; Cheng, S.; Gao, S. Automatic design of machine learning via evolutionary computation: A survey. Appl. Soft Comput. 2023, 143, 110412. [Google Scholar] [CrossRef]
- Espejo, P.G.; Ventura, S.; Herrera, F. A Survey on the Application of Genetic Programming to Classification. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 2010, 40, 121–144. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans. Evol. Comput. 2016, 20, 606–626. [Google Scholar] [CrossRef]
- Zhou, X.; Qin, A.K.; Sun, Y.; Tan, K.C. A Survey of Advances in Evolutionary Neural Architecture Search. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Virtually, 28 June–1 July 2021; pp. 950–957. [Google Scholar] [CrossRef]
- Papavasileiou, E.; Cornelis, J.; Jansen, B. A Systematic Literature Review of the Successors of “NeuroEvolution of Augmenting Topologies”. Evol. Comput. 2021, 29, 1–73. [Google Scholar] [CrossRef]
- Fogel, G.B.; Corne, D.W. (Eds.) Evolutionary Computation in Bioinformatics; Morgan Kaufmann: San Francisco, CA, USA, 2003. [Google Scholar]
- Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Survey on Genetic Programming and Machine Learning Techniques for Heuristic Design in Job Shop Scheduling. IEEE Trans. Evol. Comput. 2023, 28, 147–167. [Google Scholar] [CrossRef]
- Kerschke, P.; Hoos, H.H.; Neumann, F.; Trautmann, H. Automated Algorithm Selection: Survey and Perspectives. Evol. Comput. 2019, 27, 3–45. [Google Scholar] [CrossRef]
- Bi, Y.; Xue, B.; Mesejo, P.; Cagnoni, S.; Zhang, M. A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends. IEEE Trans. Evol. Comput. 2023, 27, 5–25. [Google Scholar] [CrossRef]
- Jayasena, A.; Mishra, P. Directed Test Generation for Hardware Validation: A Survey. ACM Comput. Surv. 2024, 56, 132. [Google Scholar] [CrossRef]
- Sobania, D.; Schweim, D.; Rothlauf, F. A Comprehensive Survey on Program Synthesis with Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2023, 27, 82–97. [Google Scholar] [CrossRef]
- Arcuri, A.; Galeotti, J.P.; Marculescu, B.; Zhang, M. EvoMaster: A Search-Based System Test Generation Tool. J. Open Source Softw. 2021, 6, 2153. [Google Scholar] [CrossRef]
- Tan, Z.; Luo, L.; Zhong, J. Knowledge transfer in evolutionary multi-task optimization: A survey. Appl. Soft Comput. 2023, 138, 110182. [Google Scholar] [CrossRef]
- Zhao, H.; Ning, X.; Liu, X.; Wang, C.; Liu, J. What makes evolutionary multi-task optimization better: A comprehensive survey. Appl. Soft Comput. 2023, 145, 110545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicirello, V.A. Evolutionary Computation: Theories, Techniques, and Applications. Appl. Sci. 2024, 14, 2542. https://doi.org/10.3390/app14062542
Cicirello VA. Evolutionary Computation: Theories, Techniques, and Applications. Applied Sciences. 2024; 14(6):2542. https://doi.org/10.3390/app14062542
Chicago/Turabian StyleCicirello, Vincent A. 2024. "Evolutionary Computation: Theories, Techniques, and Applications" Applied Sciences 14, no. 6: 2542. https://doi.org/10.3390/app14062542
APA StyleCicirello, V. A. (2024). Evolutionary Computation: Theories, Techniques, and Applications. Applied Sciences, 14(6), 2542. https://doi.org/10.3390/app14062542