Influence of Isometric and Dynamic Fatiguing Protocols on Dynamic Strength Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedures
2.3. Countermovement Jumps
2.4. Isometric Mid-Thigh Pulls
2.5. Fatiguing Protocols
2.6. Data Acquisition and Analysis
2.7. Statistical Analysis
3. Results
3.1. Reliability and Pre-Fatigue Outcomes
3.2. The Effects of Fatigue on RPE, CMJ, IMTP and DSI
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A Brief Review of Strength and Ballistic Assessment Methodologies in Sport. Sport. Med. 2014, 44, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Buchheit, M. Sprint Running Performance Monitoring: Methodological and Practical Considerations. Sport. Med. 2016, 46, 641–656. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- James, L.P.; Comfort, P. The Reliability of Novel, Temporal-Based Dynamic Strength Index Metrics. Sport. Biomech. 2022. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Jones, P.A.; Comfort, P. Reliability of the Dynamic Strength Index in College Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Ahn, N.; Kim, H.; Krzyszkowski, J.; Roche, S.; Kipp, K. Joint-Level Determinants of the Dynamic Strength Index: Implications for Testing and Monitoring. Sport. Biomech. 2022. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Thomas, C.; Dos’Santos, T.; Jones, P.A.; Suchomel, T.J.; McMahon, J.J. Comparison of Methods of Calculating Dynamic Strength Index. Int. J. Sports Physiol. Perform. 2018, 13, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Thomas, C.; Dos’santos, T.; Suchomel, T.J.; Jones, P.A.; McMahon, J.J. Changes in Dynamic Strength Index in Response to Strength Training. Sports 2018, 6, 176. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Dos’santos, T.; Comfort, P. Influence of Dynamic Strength Index on Countermovement Jump Force-, Power-, Velocity-, and Displacement-Time Curves. Sports 2017, 5, 72. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Lake, J.; Loturco, I.; Turner, A. A Novel Approach for Athlete Profiling: The Unilateral Dynamic Strength Index. J. Strength Cond. Res. 2021, 35, 1023–1029. [Google Scholar] [CrossRef]
- Young, K.P.; Haff, G.G.; Newton, R.U.; Gabbett, T.J.; Sheppard, J.M. Assessment and Monitoring of Ballistic and Maximal Upper-Body Strength Qualities in Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Chapman, D.; Taylor, K.-L. An Evaluation of a Strength Qualities Assessment Method for the Lower Body. J. Aust. Strength Cond 2011, 19, 4–10. [Google Scholar]
- Krüger, R.L.; Aboodarda, S.J.; Jaimes, L.M.; MacIntosh, B.R.; Samozino, P.; Millet, G.Y. Fatigue and Recovery Measured with Dynamic Properties versus Isometric Force: Effects of Exercise Intensity. J. Exp. Biol. 2019, 222, jeb197483. [Google Scholar] [CrossRef]
- Koral, J.; Fanget, M.; Imbert, L.; Besson, T.; Kennouche, D.; Parent, A.; Foschia, C.; Rossi, J.; Millet, G.Y. Fatigue Measured in Dynamic Versus Isometric Modes After Trail Running Races of Various Distances. Int. J. Sports Physiol. Perform. 2022, 17, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Hansen, C.B.; Aagaard, P.; Madsen, K. Muscle Mechanical Characteristics in Fatigue and Recovery from a Marathon Race in Highly Trained Runners. Eur. J. Appl. Physiol. 2007, 101, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.L.; Cronin, J.B.; Chapman, D.W.; Hopkins, W.G.; Newton, M. Relationship between Changes in Jump Performance and Laboratory Measures of Low Frequency Fatigue. Gazz. Medica Ital. Arch. Sci. Mediche 2015, 174, 241–250. [Google Scholar]
- Lum, D.; Howatson, G. Comparing the Acute Effects of a Session of Isometric Strength Training with Heavy Resistance Training on Neuromuscular Function. J. Sci. Sport Exerc. 2023. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Lambert, N.J.; Kroll, W.P. Voluntary and Reflex Responses to Fatigue with Stretch-Shortening Exercise. Can. J. Sport Sci. 1991, 16, 142–150. [Google Scholar]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical Jump Performance Is Affected by the Velocity and Depth of the Countermovement. Sport. Biomech. 2021, 20, 1015–1030. [Google Scholar] [CrossRef]
- Bishop, C.; Abbott, W.; Brashill, C.; Turner, A.; Lake, J.; Read, P. Bilateral vs. Unilateral Countermovement Jumps: Comparing the Magnitude and Direction of Asymmetry in Elite Academy Soccer Players. J. Strength Cond. Res. 2020, 36, 1660–1666. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Weakley, J.; García-Pinillos, F.; Rojas, F.J.; García-Ramos, A. Influence of Countermovement Depth on the Countermovement Jump-Derived Reactive Strength Index Modified. Eur. J. Sport Sci. 2021, 21, 1606–1616. [Google Scholar] [CrossRef]
- Comfort, P.; Dos’Santos, T.; Beckham, G.K.; Stone, M.H.; Guppy, S.N.; Haff, G.G. Standardization and Methodological Considerations for the Isometric Midthigh Pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Rojas, F.J.; García-Ramos, A. Reliability and Magnitude of Loaded Countermovement Jump Performance Variables: A Technical Examination of the Jump Threshold Initiation. Sport. Biomech. 2022, 21, 622–636. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Jones, P.A.; Comfort, P.; Thomas, C. Effect of Different Onset Thresholds on Isometric Midthigh Pull Force-Time Variables. J. Strength Cond. Res. 2017, 31, 3463–3473. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routlege Academic: New York, NY, USA, 1988. [Google Scholar]
- Avin, K.G.; Frey Law, L.A. Age-Related Differences in Muscle Fatigue Vary by Contraction Type: A Meta-Analysis. Phys. Ther. 2011, 91, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.K. Sex Differences and Mechanisms of Task-Specific Muscle Fatigue. Exerc. Sport Sci. Rev. 2009, 37, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Sideris, V.; Chrismas, B.C.R.; Read, P.J. Optimizing Athlete Assessment of Maximal Force and Rate of Development: A Comparison of the Isometric Squat and Mid-Thigh Pull. bioRxiv 2020, 2020-04. [Google Scholar]
- Mackala, K.; Stodoka, J.; Siemienski, A.; Coh, M. Biomechanical Analysis of Squat Jump and Countermovement Jump from Varying Starting Positions. J. Strength Cond. Res. 2013, 27, 2650–2661. [Google Scholar] [CrossRef] [PubMed]
- Ando, R.; Suzuki, Y. Positive Relationship between Passive Muscle Stiffness and Rapid Force Production. Hum. Mov. Sci. 2019, 66, 285–291. [Google Scholar] [CrossRef]
- Krzyszkowski, J.; Chowning, L.D.; Harry, J.R. Phase-Specific Predictors of Countermovement Jump Performance That Distinguish Good From Poor Jumpers. J. Strength Cond. Res. 2022, 36, 1257–1263. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of Force Development: Physiological and Methodological Considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Del Vecchio, A.; Negro, F.; Holobar, A.; Casolo, A.; Folland, J.P.; Felici, F.; Farina, D. You Are as Fast as Your Motor Neurons: Speed of Recruitment and Maximal Discharge of Motor Neurons Determine the Maximal Rate of Force Development in Humans. J. Physiol. 2019, 597, 2445–2456. [Google Scholar] [CrossRef]
- Jo, D.; Goubran, M.; Bilodeau, M. Sex Differences in Central and Peripheral Fatigue Induced by Sustained Isometric Ankle Plantar Flexion. J. Electromyogr. Kinesiol. 2022, 65, 102676. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Taylor, J.L.; Gandevia, S.C. Recovery of Central and Peripheral Neuromuscular Fatigue after Exercise. J. Appl. Physiol. 2017, 122, 1068–1076. [Google Scholar] [CrossRef]
- Horita, T.; Komi, P.V.; Hämäläinen, I.; Avela, J. Exhausting Stretch-Shortening Cycle (SSC) Exercise Causes Greater Impairment in SSC Performance than in Pure Concentric Performance. Eur. J. Appl. Physiol. 2003, 88, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Pupo, J.D.; Dias, J.A.; Gheller, R.G.; Detanico, D.; Santos, S.G. Dos Stiffness, Intralimb Coordination, and Joint Modulation during a Continuous Vertical Jump Test. Sport. Biomech. 2013, 12, 259–271. [Google Scholar] [CrossRef]
- Lazaridis, S.; Patikas, D.A.; Bassa, E.; Tsatalas, T.; Hatzikotoulas, K.; Ftikas, C.; Kotzamanidis, C. The Acute Effects of an Intense Stretch-Shortening Cycle Fatigue Protocol on the Neuromechanical Parameters of Lower Limbs in Men and Prepubescent Boys. J. Sports Sci. 2018, 36, 131–139. [Google Scholar] [CrossRef] [PubMed]
- McNeil, C.J.; Allen, M.D.; Olympico, E.; Shoemaker, J.K.; Rice, C.L. Blood Flow and Muscle Oxygenation during Low, Moderate, and Maximal Sustained Isometric Contractions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R475–R481. [Google Scholar] [CrossRef]
- Markovic, S.; Mirkov, D.M.; Nedeljkovic, A.; Jaric, S. Body Size and Countermovement Depth Confound Relationship between Muscle Power Output and Jumping Performance. Hum. Mov. Sci. 2014, 33, 203–210. [Google Scholar] [CrossRef] [PubMed]
N | Age (Years) | Body Height (cm) | Body Mass (kg) | |
---|---|---|---|---|
Female | 12 | 23.4 ± 1.9 | 163.9 ± 6.1 | 58.2 ± 5.4 |
Male | 12 | 25.9 ± 3.5 | 181.0 ± 5.1 | 77.2 ± 7.0 |
All | 24 | 24.7 ± 3.0 | 172.4 ± 10.3 | 67.7 ± 11.5 |
CMJ Fatigue | IMTP Fatigue | ANOVA | |||||
---|---|---|---|---|---|---|---|
Time | Fatigue | Interaction | |||||
CMJ height (cm) | Pre-fatigue | 35.0 ± 7.3 | 33.7 ± 6.8 | p | 0.001 | 0.001 | 0.001 |
Post-fatigue | 23.9 ± 5.4 | 31.7 ± 6.1 | η2 | 0.87 | 0.67 | 0.87 | |
CMJ peak force (N) | Pre-fatigue | 1726 ± 369 | 1715 ± 341 | p | 0.001 | 0.001 | 0.001 |
Post-fatigue | 1490 ± 343 | 1661 ± 311 | η2 | 0.8 | 0.53 | 0.47 | |
IMTP peak force (N) | Pre-fatigue | 2262 ± 673 | 2256 ± 667 | p | 0.001 | 0.001 | 0.001 |
Post-fatigue | 2234 ± 647 | 1326 ± 402 | η2 | 0.89 | 0.86 | 0.89 | |
DSI (a.u.) | Pre-fatigue | 0.79 ± 0.12 | 0.79 ± 0.12 | p | 0.001 | 0.001 | 0.001 |
Post-fatigue | 0.68 ± 0.09 | 1.30 ± 0.21 | η2 | 0.94 | 0.91 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smajla, D.; Šarabon, N.; García Ramos, A.; Janicijevic, D.; Kozinc, Ž. Influence of Isometric and Dynamic Fatiguing Protocols on Dynamic Strength Index. Appl. Sci. 2024, 14, 2722. https://doi.org/10.3390/app14072722
Smajla D, Šarabon N, García Ramos A, Janicijevic D, Kozinc Ž. Influence of Isometric and Dynamic Fatiguing Protocols on Dynamic Strength Index. Applied Sciences. 2024; 14(7):2722. https://doi.org/10.3390/app14072722
Chicago/Turabian StyleSmajla, Darjan, Nejc Šarabon, Amador García Ramos, Danica Janicijevic, and Žiga Kozinc. 2024. "Influence of Isometric and Dynamic Fatiguing Protocols on Dynamic Strength Index" Applied Sciences 14, no. 7: 2722. https://doi.org/10.3390/app14072722
APA StyleSmajla, D., Šarabon, N., García Ramos, A., Janicijevic, D., & Kozinc, Ž. (2024). Influence of Isometric and Dynamic Fatiguing Protocols on Dynamic Strength Index. Applied Sciences, 14(7), 2722. https://doi.org/10.3390/app14072722