Towards Harnessing the Most of ChatGPT for Korean Grammatical Error Correction
Abstract
:1. Introduction
- Comprehensive evaluation of the performance of the state-of-the-art large language model ChatGPT on the Korean Grammatical Error Correction (K-GEC) task using the K-NCT gold-standard test set.
- Critical interpretation of the results within the broader context of the evolution of NLP methodologies, examining the potential challenges, strengths, and areas for improvement that the K-NCT dataset might unveil when used in conjunction with cutting-edge language models like ChatGPT.
- Exploration of the role of prompt engineering in optimizing ChatGPT’s performance on the K-GEC task, investigating how carefully crafted prompts can influence the model’s outputs and accuracy.
2. Related Works
2.1. Korean Grammatical Error Correction
2.2. Large Language Model
3. ChatGPT for K-GEC
3.1. Types of Validation
3.2. Validation Design
4. Experimental Settings
4.1. Dataset
4.2. Implementation Details
5. Experimental Results
5.1. Main Results
5.2. Additional Analysis
5.3. Quantitative Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, C.; Kim, K.; Yang, Y.; Kang, M.; Lim, H. Neural spelling correction: Translating incorrect sentences to correct sentences for multimedia. Multimed. Tools Appl. 2020, 80, 34591–34608. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Liu, J.; Liu, Z. A comprehensive survey of grammar error correction. arXiv 2020, arXiv:2005.06600. [Google Scholar]
- Lee, J.H.; Kwon, H.C. Context-Sensitive Spelling Error Correction Techniques in Korean Documents using Generative Adversarial Network. J. Korea Multimed. Soc. 2021, 24, 1391–1402. [Google Scholar]
- Xiong, J.; Zhang, Q.; Zhang, S.; Hou, J.; Cheng, X. HANSpeller: A unified framework for Chinese spelling correction. Int. J. Comput. Linguist. Chin. Lang. Process. 2015, 20, 1. [Google Scholar]
- Kim, M.; Jin, J.; Kwon, H.C.; Yoon, A. Statistical context-sensitive spelling correction using typing error rate. In Proceedings of the 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, Australia, 3–5 December 2013; pp. 1242–1246. [Google Scholar]
- Lee, J.H.; Kim, M.; Kwon, H.C. Improved statistical language model for context-sensitive spelling error candidates. J. Korea Multimed. Soc. 2017, 20, 371–381. [Google Scholar] [CrossRef]
- Lee, M.; Shin, H.; Lee, D.; Choi, S.P. Korean Grammatical Error Correction Based on Transformer with Copying Mechanisms and Grammatical Noise Implantation Methods. Sensors 2021, 21, 2658. [Google Scholar] [CrossRef]
- Park, C.; Park, S.; Lim, H. Self-Supervised Korean Spelling Correction via Denoising Transformer. In Proceedings of the 2023 International Conference on Information, System and Convergence Applications 2020.
- Park, C.; Seo, J.; Lee, S.; Son, J.; Moon, H.; Eo, S.; Lee, C.; Lim, H.S. Hyper-BTS Dataset: Scalability and Enhanced Analysis of Back TranScription (BTS) for ASR Post-Processing. In Proceedings of the Findings of the Association for Computational Linguistics: EACL 2024, St. Julian’s, Malta, 18–22 March 2024; pp. 67–78. [Google Scholar]
- OpenAI-Blog. ChatGPT: Optimizing Language Models for Dialogue. 2022. Available online: https://chatgpt.r4wand.eu.org/ (accessed on 1 November 2023).
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A Survey of Large Language Models. arXiv 2023, arXiv:2303.18223. [Google Scholar]
- Kim, D.; Park, C.; Kim, S.; Lee, W.; Song, W.; Kim, Y.; Kim, H.; Kim, Y.; Lee, H.; Kim, J.; et al. Solar 10.7 b: Scaling large language models with simple yet effective depth up-scaling. arXiv 2023, arXiv:2312.15166. [Google Scholar]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Team, G.; Anil, R.; Borgeaud, S.; Wu, Y.; Alayrac, J.B.; Yu, J.; Soricut, R.; Schalkwyk, J.; Dai, A.M.; Hauth, A.; et al. Gemini: A family of highly capable multimodal models. arXiv 2023, arXiv:2312.11805. [Google Scholar]
- Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; Casas, D.d.l.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825. [Google Scholar]
- OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Liang, Y.; Wu, C.; Song, T.; Wu, W.; Xia, Y.; Liu, Y.; Ou, Y.; Lu, S.; Ji, L.; Mao, S.; et al. Taskmatrix. ai: Completing tasks by connecting foundation models with millions of apis. arXiv 2023, arXiv:2303.16434. [Google Scholar]
- Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Rozovskaya, A.; Roth, D. Grammar error correction in morphologically rich languages: The case of Russian. Trans. Assoc. Comput. Linguist. 2019, 7, 1–17. [Google Scholar] [CrossRef]
- Imamura, K.; Saito, K.; Sadamitsu, K.; Nishikawa, H. Grammar error correction using pseudo-error sentences and domain adaptation. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju, Korea, 8–14 July 2012; Volume 2, pp. 388–392. [Google Scholar]
- Koo, S.; Park, C.; Seo, J.; Lee, S.; Moon, H.; Lee, J.; Lim, H. K-nct: Korean neural grammatical error correction gold-standard test set using novel error type classification criteria. IEEE Access 2022, 10, 118167–118175. [Google Scholar] [CrossRef]
- Koo, S.; Park, C.; Kim, J.; Seo, J.; Eo, S.; Moon, H.; Lim, H.S. KEBAP: Korean Error Explainable Benchmark Dataset for ASR and Post-processing. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 6–10 December 2023; pp. 4798–4815. [Google Scholar]
- Koo, S.; Park, C.; Kim, J.; Seo, J.; Eo, S.; Moon, H.; Lim, H. Toward Practical Automatic Speech Recognition and Post-Processing: A Call for Explainable Error Benchmark Guideline. arXiv 2024, arXiv:2401.14625. [Google Scholar]
- Li, H.; Wang, Y.; Liu, X.; Sheng, Z.; Wei, S. Spelling error correction using a nested rnn model and pseudo training data. arXiv 2018, arXiv:1811.00238. [Google Scholar]
- Solyman, A.; Wang, Z.; Tao, Q. Proposed model for arabic grammar error correction based on convolutional neural network. In Proceedings of the 2019 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 21–23 September 2019; pp. 1–6. [Google Scholar]
- Kuznetsov, A.; Urdiales, H. Spelling Correction with Denoising Transformer. arXiv 2021, arXiv:2105.05977. [Google Scholar]
- Tarnavskyi, M.; Chernodub, A.; Omelianchuk, K. Ensembling and Knowledge Distilling of Large Sequence Taggers for Grammatical Error Correction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Volume 1: Long Papers, pp. 3842–3852. [Google Scholar] [CrossRef]
- Kaneko, M.; Takase, S.; Niwa, A.; Okazaki, N. Interpretability for Language Learners Using Example-Based Grammatical Error Correction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; pp. 7176–7187. [Google Scholar] [CrossRef]
- Gan, Z.; Xu, H.; Zan, H. Self-Supervised Curriculum Learning for Spelling Error Correction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 3487–3494. [Google Scholar]
- Cao, H.; Yang, W.; Ng, H.T. Grammatical Error Correction with Contrastive Learning in Low Error Density Domains. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 4867–4874. [Google Scholar] [CrossRef]
- Sun, X.; Ge, T.; Wei, F.; Wang, H. Instantaneous grammatical error correction with shallow aggressive decoding. arXiv 2021, arXiv:2106.04970. [Google Scholar]
- Wang, D.; Song, Y.; Li, J.; Han, J.; Zhang, H. A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Check. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2517–2527. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Menkes, F. Swedish Natural Language Processing with Long Short-Term Memory Neural Networks: A Machine Learning-powered Grammar and Spell-Checker for the Swedish Language. Bachelor’s Thesis, Linnaeus University, Växjö, Sweden, 2018. [Google Scholar]
- Náplava, J.; Popel, M.; Straka, M.; Straková, J. Understanding Model Robustness to User-generated Noisy Texts. In Proceedings of the Seventh Workshop on Noisy User-Generated Text (W-NUT 2021), Online, 11 November 2021; pp. 340–350. [Google Scholar] [CrossRef]
- Hidayatullah, E. Evaluating the effectiveness of ChatGPT to improve English students’ writing skills. Humanit. Educ. Appl. Linguist. Lang. Teaching Conf. Ser. 2024, 1, 14–19. [Google Scholar]
- Schmidt-Fajlik, R. Chatgpt as a grammar checker for japanese english language learners: A comparison with grammarly and prowritingaid. AsiaCALL Online J. 2023, 14, 105–119. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Ma, S.; Jiang, Y.; Li, Y.; Zhou, F.; Zheng, H.T.; Zhou, Q. On the (in) effectiveness of large language models for chinese text correction. arXiv 2023, arXiv:2307.09007. [Google Scholar]
- Zhang, J.; Feng, H.; Liu, B.; Zhao, D. Survey of Technology in Network Security Situation Awareness. Sensors 2023, 23, 2608. [Google Scholar] [CrossRef] [PubMed]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws for neural language models. arXiv 2020, arXiv:2001.08361. [Google Scholar]
- Wei, X.; Cui, X.; Cheng, N.; Wang, X.; Zhang, X.; Huang, S.; Xie, P.; Xu, J.; Chen, Y.; Zhang, M.; et al. Zero-shot information extraction via chatting with chatgpt. arXiv 2023, arXiv:2302.10205. [Google Scholar]
- Peng, K.; Ding, L.; Zhong, Q.; Shen, L.; Liu, X.; Zhang, M.; Ouyang, Y.; Tao, D. Towards making the most of chatgpt for machine translation. arXiv 2023, arXiv:2303.13780. [Google Scholar]
- Ippolito, D.; Kriz, R.; Sedoc, J.; Kustikova, M.; Callison-Burch, C. Comparison of Diverse Decoding Methods from Conditional Language Models. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 3752–3762. [Google Scholar] [CrossRef]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.
- Napoles, C.; Sakaguchi, K.; Post, M.; Tetreault, J. Ground truth for grammatical error correction metrics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 2, pp. 588–593. [Google Scholar]
Error Type | Explanation | ||||
---|---|---|---|---|---|
Spacing Error | Violating the spacing rules | ||||
Punctuation Error | Punctuation marks are not attached in Korean sentences or are attached in the wrong position | ||||
Numerical Error | Cardinal number indicating quantity and the ordinal number indicating the order are in error | ||||
Spelling and Grammatical Error | Primary Error | Monolingual Error | Remove Error | Some words are not recognized, or endings or suffixes are omitted | |
Addition Error | Same word is repeated, or an unused postposition or ending is added | ||||
Replace Error | Word replace | Word is replaced by another word | |||
Rotation replace | Order of syllables changes within a one phrase | ||||
Separation Error | Separating consonants and vowels in characters | ||||
Multilingual Error | Typing language Error | Typing while the keyboard is not in Korean mode | |||
Foreign word conversion Error | Writing differently from the standard foreign language pronunciation | ||||
Secondary Error | Spelling Error | Consonant vowel conversion error | Spelling error in non-speaking alphabet units | ||
Grapheme-to-phoneme(G2P) Error | Writing spellings according to pronunciation | ||||
Syntax Error | Element Error | The Korean sentence components are not equipped or the word order is not correct | |||
Tense Error | Using a verb that does not match the tense | ||||
Postposition Error | Probing that does not fit the grammar | ||||
Suffix Error | Using an ending that is not grammatically correct | ||||
Auxiliary predicate Error | Using an auxiliary verb that is not grammatically correct | ||||
Semantic Error | Dialect Error | Writing in non-standard language | |||
Polite speech Error | An adjective expression that does not fit the subject | ||||
Behavioral Error | Expressions that the subject cannot perform | ||||
Coreference Error | Invalid entity reference | ||||
Discourse context Error | Contradicting the context of the previous discourse | ||||
Neologism Error | Using grammar or new words that are not included in the existing grammar system |
K-NCT | Test | |
---|---|---|
Error Sentence | Correct Sentence | |
# of sents | 3000 | 3000 |
# of tokens | 129,798 | 129,886 |
# of words | 31,183 | 31,700 |
avg of SL ∆ | 43.27 | 43.29 |
avg of WS | 10.39 | 10.57 |
avg of SS | 9.39 | 9.57 |
Type | # Shots | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 4 | 8 | 16 | ||||||
BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | |
temperature = 0.2 | ||||||||||
spacing | 47.59 | 47.62 | 60.17 | 58.31 | 76.97 | 74.37 | 79.40 | 76.99 | 79.68 | 77.36 |
punctuation | 47.56 | 47.55 | 62.50 | 61.17 | 79.64 | 77.72 | 84.85 | 83.17 | 88.67 | 87.14 |
numerical | 41.72 | 37.72 | 51.89 | 46.66 | 63.97 | 58.33 | 68.53 | 62.80 | 72.53 | 66.69 |
remove | 42.37 | 41.27 | 53.75 | 50.90 | 60.02 | 57.54 | 66.86 | 63.85 | 69.63 | 67.03 |
addition | 47.77 | 46.90 | 60.23 | 57.85 | 71.01 | 68.10 | 76.91 | 73.88 | 76.50 | 73.24 |
word_replace | 46.29 | 45.10 | 52.67 | 50.77 | 71.14 | 69.58 | 67.68 | 65.43 | 70.08 | 68.07 |
rotation_replace | 51.83 | 49.48 | 59.10 | 56.37 | 67.49 | 64.25 | 74.46 | 71.80 | 76.04 | 72.31 |
separation | 64.90 | 66.27 | 71.49 | 70.85 | 86.41 | 85.49 | 87.06 | 86.54 | 85.39 | 85.24 |
typing_language | 26.35 | 25.93 | 39.08 | 35.95 | - | - | - | - | - | - |
foreign_and_conversion | 50.50 | 47.29 | 59.28 | 55.75 | 73.02 | 69.12 | 78.50 | 74.65 | 78.38 | 74.35 |
consonant_vowel_conversion | 53.01 | 51.83 | 60.01 | 57.50 | 72.00 | 69.77 | 72.14 | 70.09 | 77.87 | 74.91 |
G2P | 45.37 | 43.78 | 59.29 | 57.19 | 70.56 | 68.55 | 77.74 | 74.62 | 79.39 | 76.16 |
element | 47.57 | 47.05 | 45.15 | 43.96 | 55.19 | 54.25 | 59.61 | 58.81 | 62.68 | 62.19 |
tense | 37.60 | 31.56 | 50.08 | 43.49 | 62.75 | 53.46 | 65.32 | 56.12 | 67.15 | 58.92 |
postposition | 53.93 | 50.19 | 62.74 | 59.25 | 68.45 | 65.45 | 78.32 | 75.73 | 77.11 | 73.97 |
suffix | 49.07 | 48.99 | 58.67 | 57.92 | 74.03 | 74.15 | 75.57 | 75.64 | 75.61 | 76.57 |
auxiliary_predicate | 51.44 | 51.80 | 56.74 | 57.78 | 64.63 | 64.32 | 72.43 | 74.76 | 69.64 | 70.49 |
dialect | 49.54 | 53.02 | 52.82 | 55.92 | 62.39 | 67.86 | 67.55 | 72.26 | 69.84 | 74.09 |
polite_speech | 43.43 | 42.92 | 54.03 | 53.81 | 58.18 | 58.87 | 64.86 | 65.15 | 67.69 | 69.12 |
behavior | 43.66 | 38.95 | 43.58 | 36.83 | 52.79 | 47.71 | 57.35 | 51.46 | 59.80 | 56.01 |
neologism | 36.62 | 37.00 | 51.18 | 48.78 | 59.57 | 57.24 | 65.27 | 62.13 | 69.02 | 66.46 |
Avg. | 46.58 | 45.34 | 55.45 | 53.19 | 67.51 | 65.31 | 72.02 | 69.79 | 73.63 | 71.52 |
Type | # Shots | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 4 | 8 | 16 | ||||||
BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | |
temperature = 0.5 | ||||||||||
spacing | 45.93 | 45.84 | 63.32 | 61.40 | 76.31 | 74.07 | 78.89 | 76.18 | 80.22 | 77.71 |
punctuation | 48.97 | 49.14 | 63.11 | 60.69 | 80.59 | 78.75 | 84.59 | 82.71 | 86.64 | 85.14 |
numerical | 42.92 | 38.98 | 52.61 | 46.95 | 64.16 | 58.34 | 68.68 | 63.85 | 73.45 | 67.63 |
remove | 45.05 | 44.33 | 53.10 | 51.39 | 57.24 | 54.85 | 64.98 | 61.93 | 67.74 | 64.98 |
addition | 48.01 | 47.37 | 59.14 | 56.99 | 68.10 | 65.59 | 76.28 | 73.18 | 76.31 | 73.33 |
word_replace | 46.93 | 45.63 | 52.22 | 50.53 | 67.94 | 65.59 | 69.76 | 68.33 | 70.18 | 68.33 |
rotation_replace | 51.43 | 50.93 | 58.72 | 55.92 | 67.19 | 64.21 | 77.97 | 74.20 | 76.61 | 73.66 |
separation | 57.01 | 58.17 | 75.31 | 74.58 | 85.85 | 85.57 | 87.55 | 87.22 | 85.06 | 84.89 |
typing_language | 44.16 | 39.80 | 27.12 | 29.72 | - | - | - | - | - | - |
foreign_and_conversion | 47.68 | 45.16 | 58.23 | 56.03 | 75.20 | 71.59 | 77.18 | 72.88 | 80.34 | 76.43 |
element | 38.59 | 38.85 | 47.83 | 46.45 | 56.84 | 56.39 | 63.99 | 63.11 | 64.13 | 63.52 |
consonant_vowel_conversion | 52.55 | 50.96 | 60.50 | 57.91 | 70.98 | 68.88 | 73.87 | 71.69 | 78.15 | 75.53 |
G2P | 47.40 | 45.44 | 59.93 | 57.17 | 71.93 | 69.98 | 75.36 | 73.12 | 77.64 | 74.77 |
tense | 45.42 | 39.39 | 50.66 | 44.04 | 60.24 | 49.33 | 71.31 | 61.02 | 66.75 | 58.96 |
postposition | 49.44 | 47.25 | 62.86 | 59.10 | 67.93 | 65.32 | 73.09 | 71.01 | 77.49 | 73.85 |
suffix | 48.69 | 48.04 | 62.86 | 62.26 | 73.79 | 73.65 | 74.94 | 75.05 | 76.76 | 76.86 |
auxiliary_predicate | 51.64 | 52.07 | 52.18 | 53.04 | 66.73 | 67.38 | 72.29 | 74.05 | 70.37 | 71.11 |
dialect | 47.49 | 51.42 | 57.52 | 60.91 | 69.90 | 74.32 | 73.31 | 78.36 | 75.13 | 80.33 |
polite_speech | 47.67 | 47.90 | 52.83 | 51.93 | 56.41 | 57.09 | 65.09 | 65.94 | 65.65 | 65.80 |
behavior | 38.90 | 35.31 | 51.19 | 45.74 | 53.03 | 47.33 | 57.51 | 51.32 | 57.54 | 51.81 |
neologism | 39.32 | 39.12 | 47.32 | 46.42 | 61.56 | 59.54 | 66.68 | 64.15 | 64.53 | 62.06 |
Avg. | 46.91 | 45.77 | 55.65 | 53.77 | 67.60 | 65.39 | 72.66 | 70.47 | 73.53 | 71.34 |
Type | # Shots | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 4 | 8 | 16 | ||||||
BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | BLEU | GLEU | |
temperature = 0.8 | ||||||||||
spacing | 44.92 | 44.73 | 63.36 | 61.68 | 76.93 | 74.69 | 79.84 | 77.39 | 80.13 | 77.50 |
punctuation | 45.56 | 45.36 | 64.73 | 63.18 | 80.01 | 78.34 | 83.66 | 81.94 | 88.60 | 87.12 |
numerical | 42.73 | 39.10 | 51.99 | 46.43 | 64.14 | 57.95 | 68.72 | 63.73 | 72.20 | 66.47 |
remove | 43.34 | 42.50 | 52.79 | 50.71 | 57.63 | 55.56 | 65.14 | 63.06 | 67.59 | 64.70 |
addition | 50.90 | 48.75 | 59.00 | 56.89 | 71.32 | 68.45 | 76.88 | 74.15 | 76.53 | 73.61 |
word_replace | 45.94 | 44.90 | 51.01 | 49.61 | 67.32 | 65.18 | 70.07 | 67.99 | 71.96 | 70.35 |
rotation_replace | 46.89 | 45.79 | 62.89 | 59.35 | 70.81 | 66.73 | 76.71 | 73.22 | 77.82 | 74.64 |
separation | 59.41 | 61.52 | 77.39 | 76.83 | 84.46 | 84.31 | 86.49 | 86.31 | 86.33 | 85.78 |
typing_language | 20.93 | 20.93 | 61.87 | 61.22 | - | - | - | - | - | - |
foreign_and_conversion | 45.36 | 43.96 | 59.78 | 57.35 | 74.87 | 71.93 | 77.86 | 74.21 | 80.34 | 76.86 |
consonant_vowel_conversion | 52.20 | 50.91 | 60.84 | 57.45 | 72.11 | 70.07 | 73.66 | 71.75 | 77.74 | 75.16 |
G2P | 46.70 | 44.75 | 58.45 | 55.62 | 71.74 | 70.47 | 79.01 | 76.23 | 79.11 | 76.27 |
element | 39.82 | 40.17 | 46.21 | 46.43 | 54.56 | 53.89 | 58.73 | 57.24 | 58.17 | 57.43 |
tense | 44.35 | 37.55 | 50.76 | 44.61 | 61.49 | 51.29 | 65.87 | 54.93 | 68.02 | 59.35 |
postposition | 41.25 | 39.24 | 65.25 | 61.75 | 72.38 | 70.61 | 76.11 | 72.90 | 75.71 | 73.52 |
suffix | 45.92 | 45.43 | 64.13 | 63.58 | 74.10 | 74.97 | 75.66 | 75.58 | 80.13 | 80.61 |
auxiliary_predicate | 48.12 | 50.23 | 54.65 | 56.04 | 66.50 | 66.98 | 72.46 | 74.45 | 75.15 | 76.73 |
dialect | 44.77 | 48.64 | 60.04 | 63.95 | 69.46 | 74.49 | 72.41 | 77.33 | 71.20 | 76.07 |
polite_speech | 44.85 | 43.91 | 52.59 | 51.89 | 56.71 | 56.63 | 61.61 | 62.10 | 66.05 | 66.81 |
behavior | 39.52 | 36.11 | 47.01 | 42.80 | 55.91 | 51.35 | 59.80 | 55.11 | 54.89 | 49.94 |
neologism | 37.92 | 37.40 | 52.26 | 49.51 | 58.96 | 56.74 | 66.04 | 62.67 | 65.61 | 63.21 |
Avg. | 44.35 | 43.42 | 57.95 | 56.04 | 68.07 | 66.03 | 72.34 | 70.11 | 73.67 | 71.61 |
Sentence | Temperature | # Shots | |
---|---|---|---|
Error type = punctuation | |||
Source | 그녀는 봉투의 보내는! 사람을 보고 누가 썼는지 알 수 있습니다. (She can identify who wrote it by looking at the sender! of the envelope.) | - | - |
Target | 그녀는 봉투의 보내는 사람을 보고 누가 썼는지 알 수 있습니다. (She can identify who wrote it by looking at the sender of the envelope.) | - | - |
그녀는 봉투에 쓰인 보내는 사람을 보고 누가 썼는지 알 수 있습니다. (She can identify who wrote it by looking at the sender written on the envelope.) | 0.2 | 0 | |
그녀는 봉투에 적힌 보내는 사람을 보고 누가 썼는지를 알 수 있습니다. (She can identify who wrote it by looking at the sender written on the envelope.) | 0.2 | 1 | |
ChatGPT | 그녀는 봉투에 쓴 사람을 보고 누가 보냈는지 알 수 있습니다. (She can identify who sent it by looking at the person who wrote it on the envelope.) | 0.2 | 4 |
그녀는 봉투의 보내는 사람을 보고 누가 썼는지 알 수 있습니다 (She can identify who wrote it by looking at the sender of the envelope) | 0.2 | 8 | |
그녀는 봉투의 보내는 사람을 보고 누가 썼는지 알 수 있습니다. (She can identify who wrote it by looking at the sender of the envelope.) | 0.2 | 16 | |
Error type = tense | |||
Source | 내일 몇 시쯤 끝났을 것 같아요? (What time do you think it was over tomorrow?) | - | - |
Target | 내일 몇 시쯤 끝날 것 같아요? (What time do you think it will be over tomorrow?) | - | - |
내일 몇 시쯤 끝날 것 같아요? (What time do you think it will be over tomorrow?) | 0.2 | 1 | |
ChatGPT | 내일 몇 시쯤 끝날 것 같아요? (What time do you think it will be over tomorrow?) | 0.5 | 1 |
내일 몇 시쯤 끝나는 걸까요? (I wonder what time it will be finished tomorrow.) | 0.8 | 1 | |
Error type = neologism | |||
Source | 너는 머 타고 집에 갈 거니? (W will you ride to go home?) | - | - |
Target | 너는 뭐 타고 집에 갈 거니? (What will you ride to go home?) | - | - |
Commercialization System | 교정된 내용이 없습니다. (No corrections are needed.) | - | - |
ChatGPT | 너는 뭐 타고 집에 갈 거니? (What will you ride to go home?) | 0.2 | 8 |
Error type = remove | |||
Source | 저는 당신과 당장 결호했으면 합니다. (I would like to mary you immediately.) | - | - |
Target | 저는 당신과 당장 결혼했으면 합니다. (I would like to marry you immediately.) | - | - |
Commercialization System | 저는 당신과 당장 결혼했으면 합니다. (I would like to marry you immediately.) | - | - |
ChatGPT | 저는 당신과 당장 결혼하고 싶습니다. (I desire to marry you immediately.) | 0.2 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Koo, S.; Kim, G.; Lim, H. Towards Harnessing the Most of ChatGPT for Korean Grammatical Error Correction. Appl. Sci. 2024, 14, 3195. https://doi.org/10.3390/app14083195
Park C, Koo S, Kim G, Lim H. Towards Harnessing the Most of ChatGPT for Korean Grammatical Error Correction. Applied Sciences. 2024; 14(8):3195. https://doi.org/10.3390/app14083195
Chicago/Turabian StylePark, Chanjun, Seonmin Koo, Gyeongmin Kim, and Heuiseok Lim. 2024. "Towards Harnessing the Most of ChatGPT for Korean Grammatical Error Correction" Applied Sciences 14, no. 8: 3195. https://doi.org/10.3390/app14083195
APA StylePark, C., Koo, S., Kim, G., & Lim, H. (2024). Towards Harnessing the Most of ChatGPT for Korean Grammatical Error Correction. Applied Sciences, 14(8), 3195. https://doi.org/10.3390/app14083195