Latest Progress and Applications of Multiphase Flow and Heat Transfer
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Li, H.; Wang, X.; Huang, H.; Ning, J.; Tu, J. A Numerical Analysis of the Influence of Nozzle Geometric Structure on Spontaneous Steam Condensation and Irreversibility in the Steam Ejector Nozzle, Appl. Sci. 2021, 11, 11954. https://doi.org/10.3390/app112411954.
- Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness, Appl. Sci. 2022, 12, 1336. https://doi.org/10.3390/app12031336.
- Nasir, M.; Yamaguchi, R.; She, Y.; Patmonoaji, A.; Mahardika, M.A.; Wang, W.; Li, Z.; Matsushita, S.; Suekane, T. Hydrodynamic Fingering Induced by Gel Film Formation in Miscible Fluid Systems: An Experimental and Mathematical Study. Appl. Sci. 2022, 12, 5043. https://doi.org/10.3390/app12105043.
- Tsao, W.H.; Chen, Y.C.; Kees, C.E.; Manuel, L. The Effect of Porous Media on Wave-Induced Sloshing in a Floating Tank. Appl. Sci. 2022, 12, 5587. https://doi.org/10.3390/app12115587.
- Li, X.; Li, L.; Wang, W.; Zhao, H.; Zhao, J. Machine Learning Techniques Applied to Identify the Two-Phase Flow Pattern in Porous Media Based on Signal Analysis. Appl. Sci. 2022, 12, 8575. https://doi.org/10.3390/app12178575.
- Lu, L.; Tian, R.; Gong, X.; Zhao, Y. Enhanced Heat Transfer Study of Spherical Heat Storage Based on Response Surface Methodology. Appl. Sci. 2023, 13, 8595. https://doi.org/10.3390/app13158595.
- Li, H.; Yang, X.; Wang, C.; Shi, S.; Ma, R.; Yuan, Y. Research and Application of Steam Condensation Heat Transfer Model Containing Noncondensable Gas on a Wall Surface. Appl. Sci. 2023, 13, 10520. https://doi.org/10.3390/app131810520.
References
- Chen, L.; Ghajar, A. Frontiers and progress in multiphase flow and heat transfer. Heat Transf. Eng. 2019, 40, 1299–1300. [Google Scholar] [CrossRef]
- Faghri, A.; Zhang, Y. Fundamentals of Multiphase Heat Transfer and Flow; Springer Nature: Cham, Switzerland, 2020; ISBN 978-3-030-22137-9. [Google Scholar] [CrossRef]
- Flint, T.F.; Smith, M.C.; Shanthraj, P. Magneto-hydrodynamics of multi-phase flows in heterogeneous systems with large property gradients. Sci. Rep. 2021, 11, 18998. [Google Scholar] [CrossRef] [PubMed]
- Arastoopour, H.; Gidaspow, D.; Lyczkowski, R.W. Transport Phenomena in Multiphase Systems; Springer Nature: Cham, Switzerland, 2022; ISBN 978-3-030-68578-2. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, H.; Zhao, J.; Mei, N. Theoretical and experimental investigations of identifying the ingredients of an oil-water mixture based on a characteristic fluid inverse problem. Int. J. Thermophys. 2016, 37, 128. [Google Scholar] [CrossRef]
- Bracconi, M. CFD modeling of multiphase flows with detailed microkinetic description of the surface reactivity. Chem. Eng. Res. Des. 2022, 179, 564–579. [Google Scholar] [CrossRef]
- Kumar, V.; Nigam, V.K.D.P. Multiphase fluid flow and heat transfer characteristics in microchannels. Chem. Eng. Sci. 2017, 169, 34–66. [Google Scholar] [CrossRef]
- Jiang, S.; Tu, J.; Yang, X.; Gui, N. Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core; Springer: Singapore, 2020; ISBN 978-981-15-9565-3. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Ma, W.; Yuan, Y.; Yang, X.; Ma, R. Experimental and numerical studies on the two-dimensional flow characteristics in the radially stratified porous bed. Int. Commun. Heat Mass Transf. 2022, 133, 105940. [Google Scholar] [CrossRef]
- Li, L.; Zou, X.; Wang, H.; Zhang, S.; Wang, K. Investigations on two-phase flow resistances and its model modifications in a packed bed. Int. J. Multiph. Flow 2018, 101, 24–34. [Google Scholar] [CrossRef]
- Pandey, A.; Madduri, B.; Perng, C.; Srinivasan, C.; Dhar, S. Multiphase flow and heat transfer in an electric motor. In Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition, Columbus, OH, USA, 30 October–3 November 2022; Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering. American Society of Mechanical Engineers: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Tong, F.; Jing, L.; Zimmerman, R.W. A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses. Int. J. Rock Mech. Min. Sci. 2010, 47, 205–217. [Google Scholar] [CrossRef]
- Song, W.; Li, W.; Lin, S.; Zhou, X.; Han, F. Flow pattern evolution and flow-induced vibration response in multiphase flow within an M-shaped subsea jumper. Ocean Eng. 2024, 298, 117213. [Google Scholar] [CrossRef]
- Seo, Y.S.; Chung, S.M.; Park, J.C. Multiphase-thermal flow simulation in a straight vacuum-insulated LH2 pipe: Cargo handling system in LH2 carrier. Ocean Eng. 2024, 297, 117030. [Google Scholar] [CrossRef]
- Feng, G.; Wang, Y.; Xu, T.; Wang, F.; Shi, Y. Multiphase flow modeling and energy extraction performance for supercritical geothermal systems. Renew. Energy 2021, 173, 442–454. [Google Scholar] [CrossRef]
- Khan, R.; Ullah, S.; Qahtani, F.; Pao, W.; Talha, T. Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow. Renew. Energy 2024, 222, 119829. [Google Scholar] [CrossRef]
- Rostami, S.; Afrand, M.; Shahsavar, A.; Sheikholeslami, M.; Kalbasi, R.; Aghakhani, S.; Shadloo, M.S.; Oztop, H.F. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy 2020, 211, 118698. [Google Scholar] [CrossRef]
- Shi, X.J.; Zhang, P. conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes. Energy 2016, 99, 58–68. [Google Scholar] [CrossRef]
- Ou, Z.; Jin, H.; Ren, Z.; Zhu, S.; Song, M.; Guo, L. Mathematical model for coal conversion in supercritical water: Reacting multiphase flow with conjugate heat transfer. Int. J. Hydrogen Energy 2019, 44, 15746–15757. [Google Scholar] [CrossRef]
- Du, J.; Wu, F.; Wang, J. Intensification of hydrodynamics and heat transfer characteristics of coal-char-gas flow in a high solids-flux downer with swirling blade nozzle. Energy 2024, 294, 130945. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, W.; Yuan, Y.; Cao, X.; Yuan, Y. Heat Transfer Characteristics in Vertical Tube Condensers: Experimental Investigation and Numerical Validation. Appl. Therm. Eng. 2024, 242, 122435. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H.; Kang, Q.J.; He, Y.L.; Chen, Q.; Liu, Q. Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer. Prog. Energy Combust. Sci. 2016, 52, 62–105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L. Latest Progress and Applications of Multiphase Flow and Heat Transfer. Appl. Sci. 2024, 14, 3369. https://doi.org/10.3390/app14083369
Li L. Latest Progress and Applications of Multiphase Flow and Heat Transfer. Applied Sciences. 2024; 14(8):3369. https://doi.org/10.3390/app14083369
Chicago/Turabian StyleLi, Liangxing. 2024. "Latest Progress and Applications of Multiphase Flow and Heat Transfer" Applied Sciences 14, no. 8: 3369. https://doi.org/10.3390/app14083369
APA StyleLi, L. (2024). Latest Progress and Applications of Multiphase Flow and Heat Transfer. Applied Sciences, 14(8), 3369. https://doi.org/10.3390/app14083369