The Potential for Restoring the Activity of Oxidoreductases and Hydrolases in Soil Contaminated with Petroleum Products Using Perlite and Dolomite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil, Petroleum Products, and Sorbents
2.2. Experimental Design
2.3. Methodology of Soil Property Determinations
2.4. Statistical Analyses
3. Results
3.1. The Response of Zea mays to DO and G
3.2. Soil Enzymes Response to DO and G
3.3. Physicochemical Properties of Soil Subjected to Pressure from DO and G
3.4. The Interrelationships between Biochemical, Physicochemical Properties, and Soil Fertility Exposed to the Effects of DO and P
4. Discussion
4.1. Plant and Enzyme Response to Petrochemical Products
4.2. The Role of Dolomite and Perlite in Mitigating the Effect of Petroleum-Derived Products on Plants and Enzyme Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daryaee, R.; Moosavi, A.A.; Ghasemi, R.; Riazi, M. Chapter 13—Review of the Effects of Oil Pollutants on Physicochemical and Biological Soil Properties. In Biotechnology of Emerging Microbes; Sarma, H., Joshi, S.J., Eds.; Progress in Biochemistry and Biotechnology; Academic Press: Cambridge, MA, USA, 2024; pp. 263–297. ISBN 978-0-443-15397-6. [Google Scholar]
- Radelyuk, I.; Tussupova, K.; Klemeš, J.J.; Persson, K.M. Oil Refinery and Water Pollution in the Context of Sustainable Development: Developing and Developed Countries. J. Clean. Prod. 2021, 302, 126987. [Google Scholar] [CrossRef]
- Mekonnen, B.A.; Aragaw, T.A.; Genet, M.B. Bioremediation of Petroleum Hydrocarbon Contaminated Soil: A Review on Principles, Degradation Mechanisms, and Advancements. Front. Environ. Sci. 2024, 12, 1354422. [Google Scholar] [CrossRef]
- Geršlová, E.; Vöröš, D. Hydrocarbon-Based Parameters for the Identification of Oil Contamination in an Area with Brown Coal Mining: Emphasis on Pyrogenic Index and Alkylated PAHs. Environ. Adv. 2024, 15, 100484. [Google Scholar] [CrossRef]
- Varjani, S.J.; Gnansounou, E.; Pandey, A. Comprehensive Review on Toxicity of Persistent Organic Pollutants from Petroleum Refinery Waste and Their Degradation by Microorganisms. Chemosphere 2017, 188, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Bakina, L.G.; Polyak, Y.M.; Gerasimov, A.O.; Mayachkina, N.V.; Chugunova, M.V.; Khomyakov, Y.V.; Vertebny, V.A. Mutual Effects of Crude Oil and Plants in Contaminated Soil: A Field Study. Environ. Geochem. Health 2022, 44, 69–82. [Google Scholar] [CrossRef]
- de la Cueva, S.C.; Rodríguez, C.H.; Cruz, N.O.S.; Contreras, J.A.R.; Miranda, J.L. Changes in Bacterial Populations during Bioremediation of Soil Contaminated with Petroleum Hydrocarbons. Water Air Soil Pollut. 2016, 227, 91. [Google Scholar] [CrossRef]
- Sawicka, B.; Umachandran, K.; Fawzy, M.; Mahmoud, A.E.D. 27—Impacts of Inorganic/Organic Pollutants on Agroecosystems and Eco-Friendly Solutions. In Phytochemistry, the Military and Health; Mtewa, A.G., Egbuna, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 523–552. ISBN 978-0-12-821556-2. [Google Scholar]
- Chakravarty, P.; Chowdhury, D.; Deka, H. Ecological Risk Assessment of Priority PAHs Pollutants in Crude Oil Contaminated Soil and Its Impacts on Soil Biological Properties. J. Hazard. Mater. 2022, 437, 129325. [Google Scholar] [CrossRef]
- Ali, M.H.; Khan, M.I.; Naveed, M.; Tanvir, M.A. Microbe-Assisted Rhizodegradation of Hydrocarbons and Growth Enhancement of Wheat Plants in Hydrocarbons Contaminated Soil. Int. J. Environ. Sci. Technol. 2024, 21, 3169–3184. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products. Agriculture 2023, 13, 1669. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. The Role of Dactylis Glomerata and Diesel Oil in the Formation of Microbiome and Soil Enzyme Activity. Sensors 2020, 20, 3362. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, M.; Li, N.; Hu, Y.; Jiang, L.; Murati, H.; Su, Y. Assessment of Tolerance Limits of Petroleum Residues in Soil Organic Matter: Sorption of Dichlorobenzene by Soil. Environ. Geochem. Health 2023, 46, 16. [Google Scholar] [CrossRef] [PubMed]
- Arabani, M.; Haghsheno, H. The Influence of Oil Pollutants on the Mechanical Properties of Clayey Sand. Int. J. Environ. Res. 2024, 18, 19. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Barczyk, G.; Nadgórska-Socha, A. The Effect of Petroleum-Derived Substances and Their Bioremediation on Soil Enzymatic Activity and Soil Invertebrates. Agronomy 2021, 11, 80. [Google Scholar] [CrossRef]
- Bhuyan, B.; Kotoky, R.; Pandey, P. Impacts of Rhizoremediation and Biostimulation on Soil Microbial Community, for Enhanced Degradation of Petroleum Hydrocarbons in Crude Oil-Contaminated Agricultural Soils. Environ. Sci. Pollut. Res. 2023, 30, 94649–94668. [Google Scholar] [CrossRef] [PubMed]
- Mangotra, A.; Singh, S.K. Volatile Organic Compounds: A Threat to the Environment and Health Hazards to Living Organisms—A Review. J. Biotechnol. 2024, 382, 51–69. [Google Scholar] [CrossRef]
- Radice, R.P.; De Fabrizio, V.; Donadoni, A.; Scopa, A.; Martelli, G. Crude Oil Bioremediation: From Bacteria to Microalgae. Processes 2023, 11, 442. [Google Scholar] [CrossRef]
- George, I.I.; Nawawi, M.G.M.; Mohd, Z.J.; Farah, B.S. Environmental Effects from Petroleum Product Transportation Spillage in Nigeria: A Critical Review. Environ. Sci. Pollut. Res. 2024, 31, 1719–1747. [Google Scholar] [CrossRef]
- Abou Samra, R.M.; Ali, R.R. Tracking the Behavior of an Accidental Oil Spill and Its Impacts on the Marine Environment in the Eastern Mediterranean. Mar. Pollut. Bull. 2024, 198, 115887. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health. Int. J. Environ. Res. Public Health 2019, 16, 2474. [Google Scholar] [CrossRef]
- Shelyakin, P.V.; Semenkov, I.N.; Tutukina, M.N.; Nikolaeva, D.D.; Sharapova, A.V.; Sarana, Y.V.; Lednev, S.A.; Smolenkov, A.D.; Gelfand, M.S.; Krechetov, P.P.; et al. The Influence of Kerosene on Microbiomes of Diverse Soils. Life 2022, 12, 221. [Google Scholar] [CrossRef]
- Nebeská, D.; Auer Malinská, H.; Erol, A.; Pidlisnyuk, V.; Kuráň, P.; Medžová, A.; Smaha, M.; Trögl, J. Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils. Appl. Sci. 2021, 11, 1866. [Google Scholar] [CrossRef]
- Ali, M.H.; Khan, M.I.; Naveed, M.; Tanvir, M.A. Microbe-Assisted Rhizoremediation of Hydrocarbons and Growth Promotion of Chickpea Plants in Petroleum Hydrocarbons-Contaminated Soil. Sustainability 2023, 15, 6081. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, J. Microbiological Study in Petrol-Spiked Soil. Molecules 2021, 26, 2664. [Google Scholar] [CrossRef]
- Gandhi, M.; Kumar, R.; Mustapha, H.I.; Jha, A.; Gupta, P.K.; Akhtar, N.; Sharma, P. Impacts of Blend Diesel on Root Zone Microbial Communities: Vigna Radiata L. Growth Assessment Study. In Soil-Water, Agriculture, and Climate Change: Exploring Linkages; Dubey, S.K., Jha, P.K., Gupta, P.K., Nanda, A., Gupta, V., Eds.; Water Science and Technology Library; Springer International Publishing: Cham, Germany, 2022; pp. 233–245. ISBN 978-3-031-12059-6. [Google Scholar]
- Nassar, S.E.; Said, R.M. Bioremediation Assessment, Hematological, and Biochemical Responses of the Earthworm (Allolobophora Caliginosa) in Soil Contaminated with Crude Oil. Environ. Sci. Pollut. Res. 2021, 28, 54565–54574. [Google Scholar] [CrossRef]
- Minnikova, T.; Kolesnikov, S.; Revina, S.; Ruseva, A.; Gaivoronsky, V. Enzymatic Assessment of the State of Oil-Contaminated Soils in the South of Russia after Bioremediation. Toxics 2023, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Omenna, E.C.; Omage, K.; Ezaka, E.; Azeke, M.A. Bio-Augmentation and Bio-Stimulation with Kenaf Core Enhanced Bacterial Enzyme Activities during Bio-Degradation of Petroleum Hydrocarbon in Polluted Soil. Sci. Rep. 2024, 14, 8. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, K.; Luo, Y.; Du, L.; Tian, R.; Wang, S.; Shen, Y.; Zhang, J.; Li, N.; Shao, W.; et al. Responses of Soil Enzyme Activity to Long-Term Nitrogen Enrichment and Water Addition in a Typical Steppe. Agronomy 2023, 13, 1920. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Dangi, S.M. Enzyme Activities as Soil Health Indicators in Relation to Soil Characteristics and Crop Production. Agrosystems Geosci. Environ. 2022, 5, e20297. [Google Scholar] [CrossRef]
- Milosavljevic, J.S.; Serbula, S.M.; Cokesa, D.M.; Milanovic, D.B.; Radojevic, A.A.; Kalinovic, T.S.; Kalinovic, J.V. Soil Enzyme Activities under the Impact of Long-Term Pollution from Mining-Metallurgical Copper Production. Eur. J. Soil Biol. 2020, 101, 103232. [Google Scholar] [CrossRef]
- Nurzhan, A.; Tian, H.; Nuralykyzy, B.; He, W. Soil Enzyme Activities and Enzyme Activity Indices in Long-Term Arsenic-Contaminated Soils. Eurasian Soil Sci. 2022, 55, 1425–1435. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.S.; Kim, J.G.; Kim, S.O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Yang, J.; Yang, F.; Yang, Y.; Xing, G.; Deng, C.; Shen, Y.; Luo, L.; Li, B.; Yuan, H. A Proposal of “Core Enzyme” Bioindicator in Long-Term Pb-Zn Ore Pollution Areas Based on Topsoil Property Analysis. Environ. Pollut. 2016, 213, 760–769. [Google Scholar] [CrossRef]
- Polyak, Y.M.; Bakina, L.G.; Mayachkina, N.V.; Chugunova, M.V.; Bityutskii, N.P.; Yakkonen, K.L.; Shavarda, A.L. Long-Term Effects of Oil Contamination on Soil Quality and Metabolic Function. Environ. Geochem. Health 2023, 46, 13. [Google Scholar] [CrossRef]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The Biological Activities of β-Glucosidase, Phosphatase and Urease as Soil Quality Indicators: A Review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Yu, J.; Wang, K.; Li, J.; Cui, Y.; Shangguan, Z.; Deng, L. Soil Enzyme Activity and Stoichiometry in Response to Precipitation Changes in Terrestrial Ecosystems. Soil Biol. Biochem. 2024, 191, 109321. [Google Scholar] [CrossRef]
- Zuccarini, P.; Sardans, J.; Asensio, L.; Peñuelas, J. Altered Activities of Extracellular Soil Enzymes by the Interacting Global Environmental Changes. Glob. Chang. Biol. 2023, 29, 2067–2091. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhao, W.; Pereira, P. Soil Conservation Service Underpins Sustainable Development Goals. Glob. Ecol. Conserv. 2022, 33, e01974. [Google Scholar] [CrossRef]
- Hidalgo, K.J.; Giachini, A.J.; Schneider, M.R.; Soriano, A.U.; Baessa, M.P.; Martins, L.F.; Oliveira, V.M. Recent Advances in Bioremediation of Biofuel Blends. Int. Biodeterior. Biodegrad. 2024, 188, 105750. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Fu, B.; Huang, W. An Evaluation Model for In-Situ Bioremediation Technology of Petroleum Hydrocarbon Contaminated Soil. Environ. Pollut. 2024, 344, 123299. [Google Scholar] [CrossRef]
- Chunyan, X.; Qaria, M.A.; Qi, X.; Daochen, Z. The Role of Microorganisms in Petroleum Degradation: Current Development and Prospects. Sci. Total Environ. 2023, 865, 161112. [Google Scholar] [CrossRef]
- Ren, H.Y.; Wei, Z.J.; Wang, Y.; Deng, Y.P.; Li, M.Y.; Wang, B. Effects of Biochar Properties on the Bioremediation of the Petroleum-Contaminated Soil from a Shale-Gas Field. Environ. Sci. Pollut. Res. 2020, 27, 36427–36438. [Google Scholar] [CrossRef]
- Wei, Z.; Wei, Y.; Liu, Y.; Niu, S.; Xu, Y.; Park, J.H.; Wang, J.J. Biochar-Based Materials as Remediation Strategy in Petroleum Hydrocarbon-Contaminated Soil and Water: Performances, Mechanisms, and Environmental Impact. J. Environ. Sci. 2024, 138, 350–372. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A. Combined Impacts of Bioaugmentation and Vermiremediation on Crude Oil-Contaminated Soil: Mitigating Strategies for Prospective Environmental Management. Emerg. Contam. 2024, 10, 100302. [Google Scholar] [CrossRef]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O. A Systematic Review on the Effectiveness of Remediation Methods for Oil Contaminated Soils. Environ. Adv. 2022, 9, 100319. [Google Scholar] [CrossRef]
- Vasilyeva, G.; Mikhedova, E.; Zinnatshina, L.; Strijakova, E.; Akhmetov, L.; Sushkova, S.; Ortega-Calvo, J.-J. Use of Natural Sorbents for Accelerated Bioremediation of Grey Forest Soil Contaminated with Crude Oil. Sci. Total Environ. 2022, 850, 157952. [Google Scholar] [CrossRef]
- Gaur, V.K.; Gupta, S.; Pandey, A. Evolution in Mitigation Approaches for Petroleum Oil-Polluted Environment: Recent Advances and Future Directions. Environ. Sci. Pollut. Res. 2022, 29, 61821–61837. [Google Scholar] [CrossRef] [PubMed]
- Zahed, M.A.; Salehi, S.; Madadi, R.; Hejabi, F. Biochar as a Sustainable Product for Remediation of Petroleum Contaminated Soil. Curr. Opin. Green Sustain. Chem. 2021, 4, 100055. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Kordala, N.; Zaborowska, M. Molecular Sieve, Halloysite, Sepiolite and Expanded Clay as a Tool in Reducing the Content of Trace Elements in Helianthus annuus L. on Copper-Contaminated Soil. Materials 2023, 16, 1827. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Evaluation of the Usefulness of Sorbents in the Remediation of Soil Exposed to the Pressure of Cadmium and Cobalt. Materials 2022, 15, 5738. [Google Scholar] [CrossRef]
- Fan, B.; Li, X.; Fu, T.; Ding, S.; Zhou, X.; Chen, Q.; Peng, Y. Simultaneous Realization of Cadmium Bioavailability Reduction and Spinach Growth Promotion in Acidic Soils with Calcined Oyster Shells and Dolomite. Soil Use Manag. 2024, 40, e12979. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. The Usability of Sorbents in Restoring Enzymatic Activity in Soils Polluted with Petroleum-Derived Products. Materials 2023, 16, 3738. [Google Scholar] [CrossRef] [PubMed]
- Onchoke, K.K.; Fateru, O.O. Influence of Perlite/Biosolid Composition on Growth and Uptake of Cd and Mn by Radish (Raphanus Sativus L.) under Greenhouse Conditions. Appl. Water Sci. 2023, 14, 7. [Google Scholar] [CrossRef]
- Kordala, N.; Wyszkowski, M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024, 29, 1069. [Google Scholar] [CrossRef] [PubMed]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of a Zeolite and Molecular Sieve to Restore Homeostasis of Soil Contaminated with Cobalt. Minerals 2020, 10, 53. [Google Scholar] [CrossRef]
- Bandura, L.; Woszuk, A.; Kołodyńska, D.; Franus, W. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals 2017, 7, 37. [Google Scholar] [CrossRef]
- Tic, W.; Pijarowski, P. Characteristics of Adsorbents Used to Remove Petroleum Contaminants from Soil and Wastewater. Przem. Chem. 2015, 94, 301–306. [Google Scholar]
- Kasai, M.; Kobayashi, Y.; Togo, M.; Nakahira, A. Synthesis of Zeolite-Surface-Modified Perlite and Their Heavy Metal Adsorption Capability. Mater. Today Proc. 2019, 16, 232–238. [Google Scholar] [CrossRef]
- Bastani, D.; Safekordi, A.A.; Alihosseini, A.; Taghikhani, V. Study of Oil Sorption by Expanded Perlite at 298.15 K. Sep. Purif. Technol. 2006, 52, 295–300. [Google Scholar] [CrossRef]
- Jiaquan, J.; Liang, Z.; Xiaolong, Z.; Bochao, W.; Yuanqiong, L.; Xiaolin, F. Effects of calcinated dolomite on the amendment of acid soil and release kinetics of Ca-Mg. Trans. Chin. Soc. Agric. Eng. 2020, 36, 235–244. [Google Scholar] [CrossRef]
- Allameh-Haery, H.; Kisi, E.; Pineda, J.; Suwal, L.P.; Fiedler, T. Elastic Properties of Green Expanded Perlite Particle Compacts. Powder Technol. 2017, 310, 329–342. [Google Scholar] [CrossRef]
- Rios-Valenciana, E.E.; Menezes, O.; Blubaum, C.; Romero, J.; Krzmarzick, M.J.; Sierra-Alvarez, R.; Field, J.A. Biodegradation of the Emerging Contaminant 3-Nitro-1,2,4-Triazol-5-One and Its Product 3-Amino-1,2,4-Triazol-5-One in Perlite/Soil Columns. Chemosphere 2023, 335, 139121. [Google Scholar] [CrossRef]
- Abbaspour, A.; Zohrabi, F.; Dorostkar, V.; Faz, A.; Acosta, J.A. Remediation of an Oil-Contaminated Soil by Two Native Plants Treated with Biochar and Mycorrhizae. J. Environ. Manag. 2020, 254, 109755. [Google Scholar] [CrossRef]
- Ali, M.H.; Muzaffar, A.; Khan, M.I.; Farooq, Q.; Tanvir, M.A.; Dawood, M.; Hussain, M.I. Microbes-Assisted Phytoremediation of Lead and Petroleum Hydrocarbons Contaminated Water by Water Hyacinth. Int. J. Phytoremediation 2024, 26, 405–415. [Google Scholar] [CrossRef]
- VERVA DO—Fuel Premium. Available online: https://www.orlen.pl/pl/dla-biznesu/produkty/paliwa/oleje-napedowe/verva-on (accessed on 6 March 2024).
- Unleaded Petrol 95. Available online: https://www.orlen.pl/pl/dla-biznesu/produkty/paliwa/benzyna/benzyna-bezolowiowa-95 (accessed on 6 March 2024).
- Çelen, U.; Balçik Tamer, Y.; Berber, H. The Potential Use of Natural Expanded Perlite as a Flame Retardant Additive for Acrylonitrile-Butadiene-Styrene Based Composites. J. Vinyl. Addit. Technol. 2024, 30, 277–293. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Sec. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- OECD-FAO Agricultural Outlook 2023–2032; Organisation for Economic Co-operation and Development: Paris, France, 2023.
- DS1897B. Available online: https://www.corteva.co.uk/products-and-solutions/pioneer/DS1897B.html (accessed on 7 March 2024).
- Wyszkowska, J.; Boros-Lajszner, E.; Kucharski, J. The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil. Energies 2024, 17, 1156. [Google Scholar] [CrossRef]
- Öhlinger, R. Dehydrogenase Activity with the Substrate TTC. In Methods in Soil Biology; Schinner, F., Ohlinger, R., Kandler, E., Margesin, R., Eds.; Springer: Berlin, Germany, 1996; pp. 241–243. [Google Scholar]
- Johnson, J.L.; Temple, K.L. Some Variables Affecting the Measurement of “Catalase Activity” in Soil. Soil Sci. Soc. Am. J. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. (Eds.) Methods in Applied Soil Microbiology and Biochemistry; Academic London: London, UK, 1988; pp. 316–365. [Google Scholar]
- TIBCO Software Inc Statistica, Version 13; Data Analysis Software System. Tibco Software Inc.: Palo Alto, CA, USA. Available online: http://Statistica.Io (accessed on 10 July 2023).
- Zaborowska, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Bisphenol A—A Dangerous Pollutant Distorting the Biological Properties of Soil. Int. J. Mol. Sci. 2021, 22, 12753. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Kucharski, J.; Kucharski, M.; Borowik, A. Applicability of Biochemical Indices to Quality Assessment of Soil Polluted with Heavy Metal. J. Elem. 2013, 18. [Google Scholar] [CrossRef]
- Microsoft Office 365. Available online: www.office.com (accessed on 18 October 2023).
- RStudio Team. RStudio: Integrated Development for R. RStudio Version 2023.06.0, PBC, Boston, MA, USA. Available online: http://Www.Rstudio.Com/ (accessed on 10 February 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-Project.Org/ (accessed on 10 February 2024).
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, M.; Moeller, S.; et al. Gplots: Various R Programming Tools for Plotting Data. Gplots 3.1.3. Available online: https://rdrr.io/cran/gplots/ (accessed on 10 February 2024).
- Krzywinski, M.; Schein, J.; Birol, İ.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. Available online: https://www.interactivenn.net/ (accessed on 11 March 2024). [CrossRef] [PubMed]
- Ma, D.; Xu, J.; Zhou, J.; Ren, L.; Li, J.; Zhang, Z.; Xia, J.; Xie, H.; Wu, T. Using Sweet Sorghum Varieties for the Phytoremediation of Petroleum-Contaminated Salinized Soil: A Preliminary Study Based on Pot Experiments. Toxics 2023, 11, 208. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Borowik, A.; Kucharski, J. Response of Avena Sativa, Microorganisms and Enzymes to Contamination of Soil with Diesel Oil. Plant. Soil Environ. 2015, 61, 483–488. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, J. The Resistance of Lolium perenne L. × hybridum, Poa pratensis, Festuca rubra, F. arundinacea, Phleum pratense and Dactylis glomerata to Soil Pollution by Diesel Oil and Petroleum. Plant. Soil Environ. 2019, 65, 307–312. [Google Scholar] [CrossRef]
- Li, J.; Ma, N.; Hao, B.; Qin, F.; Zhang, X. Coupling Biostimulation and Phytoremediation for the Restoration of Petroleum Hydrocarbon-Contaminated Soil. Int. J. Phytoremediation 2023, 25, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Predikaka, T.C.; Kralj, T.; Jerman, M.S.; Mastnak, T. A Full-Scale Bioremediation Study of Diesel Fuel-Contaminated Soil: The Effect of Plant Species and Soil Amendments. Int. J. Environ. Sci. Technol. 2024, 21, 4319–4330. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Cai, Z.; Liu, J.; Yu, B.; Zhou, Q. Phytoremediation of Petroleum Hydrocarbon-Contaminated Saline-Alkali Soil by Wild Ornamental Iridaceae Species. Int. J. Phytoremediation 2017, 19, 300–308. [Google Scholar] [CrossRef]
- Steliga, T.; Kluk, D. Application of Festuca Arundinacea in Phytoremediation of Soils Contaminated with Pb, Ni, Cd and Petroleum Hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Gałązka, A.; Kucharski, J. Role of Festuca rubra and Festuca arundinacea in Determinig the Functional and Genetic Diversity of Microorganisms and of the Enzymatic Activity in the Soil Polluted with Diesel Oil. Environ. Sci. Pollut. Res. 2019, 26, 27738–27751. [Google Scholar] [CrossRef]
- Mohammed Suhail, F.; Adnan Hussein, Z. Rule of Rhizobia and Bacillus in Phytoremediation of Contaminated Soil with Diesel Oil. J. Saudi Soc. Agric. Sci. 2024, 23, 11–16. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Energetic Value of Elymus elongatus L. and Zea Mays L. Grown on Soil Polluted with Ni2+, Co2+, Cd2+, and Sensitivity of Rhizospheric Bacteria to Heavy Metals. Energies 2021, 14, 4903. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of Petroleum Hydrocarbons: Sources, Impacts and Remediation Strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef]
- Abu-Khasan, M. Analysis of Soil Contamination with Oil and Petroleum Products. In Proceedings of the International Scientific Siberian Transport Forum TransSiberia—2021; Manakov, A., Edigarian, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1514–1522. [Google Scholar]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of Soil from Petroleum Contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Korshunova, T.Y.; Chetverikov, S.P.; Bakaeva, M.D.; Kuzina, E.V.; Rafikova, G.F.; Chetverikova, D.V.; Loginov, O.N. Microorganisms in the Elimination of Oil Pollution Consequences (Review). Appl. Biochem. Microbiol. 2019, 55, 344–354. [Google Scholar] [CrossRef]
- Devatha, C.P.; Vishnu Vishal, A.; Purna Chandra Rao, J. Investigation of Physical and Chemical Characteristics on Soil Due to Crude Oil Contamination and Its Remediation. Appl. Water Sci. 2019, 9, 89. [Google Scholar] [CrossRef]
- Pal, D.; Sen, S. Emerging Petroleum Pollutants and Their Adverse Effects on the Environment. In Impact of Petroleum Waste on Environmental Pollution and its Sustainable Management Through Circular Economy; Behera, I.D., Das, A.P., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 103–137. ISBN 978-3-031-48220-5. [Google Scholar]
- Tripathi, V.; Gaur, V.K.; Kaur, I.; Srivastava, P.K.; Manickam, N. Unlocking Bioremediation Potential for Site Restoration: A Comprehensive Approach for Crude Oil Degradation in Agricultural Soil and Phytotoxicity Assessment. J. Environ. Manag. 2024, 355, 120508. [Google Scholar] [CrossRef] [PubMed]
- Steliga, T.; Kluk, D. Assessment of the Suitability of Melilotus Officinalis for Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons (TPH and PAH), Zn, Pb and Cd Based on Toxicological Tests. Toxics 2021, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Wyszkowski, M. Resistance of Aerobic Microorganisms and Soil Enzyme Response to Soil Contamination with Ekodiesel Ultra Fuel. Environ. Sci. Pollut. Res. 2017, 24, 24346–24363. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Sarikhani, M.R.; Beheshti Ale-Agha, A.; Hasanpur, K.; Shiri, J. Effects of Natural and Prolonged Crude Oil Pollution on Soil Enzyme Activities. Geoderma Reg. 2024, 36, e00742. [Google Scholar] [CrossRef]
- Zapata-Peñasco, I.; Avelino-Jiménez, I.A.; Mendoza-Pérez, J.; Vázquez Guevara, M.; Gutiérrez-Ladrón de Guevara, M.; Valadez- Martínez, M.; Hernández-Maya, L.; Garibay-Febles, V.; Fregoso-Aguilar, T.; Fonseca-Campos, J. Environmental Stressor Assessment of Hydrocarbonoclastic Bacteria Biofilms from a Marine Oil Spill. Biotechnol. Rep. 2024, 42, e00834. [Google Scholar] [CrossRef]
- Ning, Z.; Cai, P.; Zhang, M. Metagenomic Analysis Revealed Highly Diverse Carbon Fixation Microorganisms in a Petroleum-Hydrocarbon-Contaminated Aquifer. Environ. Res. 2024, 247, 118289. [Google Scholar] [CrossRef]
- Vocciante, M.; Franchi, E.; Fusini, D.; Pedron, F.; Barbafieri, M.; Petruzzelli, G.; Reverberi, A.P. Sustainable Recovery of an Agricultural Area Impacted by an Oil Spill Using Enhanced Phytoremediation. Appl. Sci. 2024, 14, 582. [Google Scholar] [CrossRef]
- Rajput, P.; Kumar, P.; Priya, A.K.; Kumari, S.; Shiade, S.R.G.; Rajput, V.D.; Fathi, A.; Pradhan, A.; Sarfraz, R.; Sushkova, S.; et al. Nanomaterials and Biochar Mediated Remediation of Emerging Contaminants. Sci. Total Environ. 2024, 916, 170064. [Google Scholar] [CrossRef]
- Myazin, V.A.; Korneykova, M.V.; Chaporgina, A.A.; Fokina, N.V.; Vasilyeva, G.K. The Effectiveness of Biostimulation, Bioaugmentation and Sorption-Biological Treatment of Soil Contaminated with Petroleum Products in the Russian Subarctic. Microorganisms 2021, 9, 1722. [Google Scholar] [CrossRef]
- Carmody, O.; Frost, R.; Xi, Y.; Kokot, S. Surface Characterisation of Selected Sorbent Materials for Common Hydrocarbon Fuels. Surf. Sci. 2007, 601, 2066–2076. [Google Scholar] [CrossRef]
- Zhan, Y.; Jiang, K.; Jiang, J.; Zhang, L.; Gao, C.; Qi, X.; Fan, J.; Li, Y.; Sun, S.; Fan, X. Soil Aggregate Construction: Contribution from Functional Soil Amendment Fertilizer Derived from Dolomite. Sustainability 2022, 14, 12287. [Google Scholar] [CrossRef]
- Franus, W.; Jozefaciuk, G.; Bandura, L.; Franus, M. Use of Spent Zeolite Sorbents for the Preparation of Lightweight Aggregates Differing in Microstructure. Minerals 2017, 7, 25. [Google Scholar] [CrossRef]
Parameter | Characteristic |
---|---|
Eutric Cambisol with a particle size distribution of loamy sand. Content in %: sand—73.46; silt—24.29; clay—2.25. Content per 1 kg d.m. of soil: Corg—6.95 g, NTotal —1.06 g, HAC—34.56 mmol(+), EBC—44.82 mmol(+), CEC—79.38 mmol(+), BS—56.46%, pHKCl 4.2. Enzyme activity per 1 kg d.m. of Deh—12.863 μmol TFF, Cat—0.161 mol O2, Ure—0.709 mmol N-NH4, AcP—2.499 mmol PN, AlP—0.393 mmol PN, Glu—0.260 mmol PN, Aryl—0.098 mmol PN. | |
Diesel oil. Premium fuel for Diesel engines, purchased from PKN Orlen (Poland). Density: 0.820–0.845 g cm−3, sulfur content—maximum 10 mg kg−1. The detailed characteristics are available on the PKN Orlen website [68]. Unleaded gasoline 95. Fuel for gasoline engines of vehicles, purchased from PKN Orlen (Poland). Density: 0.720–0.775 g cm−3, sulfur content—maximum 10 mg kg−1. The detailed characteristics are available on the PKN Orlen website [69]. The diesel oil and gasoline were applied in the experiment at doses of 0, 8, and 16 cm3 kg−1 d.m. of soil. | |
Dolomite. Ground sedimentary rock with a pH of approximately 9.0, containing Ca—50.1% and Mg—15.8% [54]. Perlite. A quartz mineral extracted from volcanic rocks with a pH of approximately 7.0, characterized by an amorphous porous structure. It contains SiO2—about 73% w/w, Al2O3—about 15% w/w, Ca—0.36–1.07%, and Mg—0.12–0.42% [56,70]. The dolomite and perlite used in the study were provided by Biovita Sp. z o.o., Tenczynek, Poland. The sorbents were applied in the experiment at doses of 0 and 10 g kg−1 d.m. of soil. | |
Along with wheat and rice, maize (Zea mays) is one of the most important cereals cultivated on Earth [71]. As a C4 plant, maize is very adaptable to different environmental conditions. The global area under maize (for grain) is 197 million hectares and is increasing steadily. According to OECD-FAO [72], global maize production is expected to reach 1.36 billion tons in 2032. In the experiment, hybrid maize of the DS1897B variety (Producer Pioneer, Warsaw, Poland) was grown which can be used for feed and biogas. It is a late-maturing variety [73]. In the study, maize was grown with 4 plants per pot for 60 days. The plants were harvested at growth stage 59 of the BBCH (Biological Bundesanstalt, Bundessortenamt, and Chemical). |
Enzyme Name | Enzyme Abbreviation | Enzyme Number—International Union of Biochemistry | Circulation of Elements | Substrate | Product | Unit in kg d.m. of Soil per Hour | References |
---|---|---|---|---|---|---|---|
Dehydrogenases | |||||||
Dehydrogenases | Deh | EC 1.1 | C-cycle | 2,3,5-triphenyl tetrazolium chloride | triphenyl fomazan (TFF) | µmol | [75] |
Catalase | Cat | EC 1.11.1.6 | C-cycle | H2O2—aqueus solution | O2 | mol | [76] |
Hydrolases | |||||||
Urease | Ure | EC 3.5.1.5 | N-cycle | Urea—aqueous solution | N-NH4 | mmol | [77] |
ß-glucosidase | Glu | EC 3.2.1.21 | C-cycle | 4-nitrophenyl-ß-d-glucopyranoside | 4-nitro-phenol (PN) | mmol | [77] |
Acid phosphatase | AcP | EC 3.1.3.2 | P-cycle | Disodium 4-nitrophenyl phosphate hexahydrate | 4-nitro-phenol (PN) | mmol | [77] |
Alkaline phospha-tase | AlP | EC 3.1.3.1 | P-cycle | Disodium 4-nitrophenyl phosphate hexahydrate | 4-nitro-phenol (PN) | mmol | [77] |
Aryosulphatase | Aryl | EC 3.1.6.1 | S-cycle | Potassium-4-nitrophenyl-sulfate | 4-nitro-phenol (PN) | mmol | [77] |
Dose DO/G, cm3 kg−1 of d.m. Soil | Diesel Oil (DO) | Gasoline (G) | ||||
---|---|---|---|---|---|---|
Sorbent (S) | ||||||
Control (C) | Dolomite (D) | Perlite (P) | Control (C) | Dolomite (D) | Perlite (P) | |
Dehydrogenases (Deh), μM TFF | ||||||
0 | 13.798 ± 0.071 hi | 21.920 ± 0.327 d | 16.287 ± 0.384 f | 13.798 ± 0.071 hi | 21.920 ± 0.327 d | 16.287 ± 0.384 f |
8 | 14.253 ± 0.199 h | 26.514 ± 0.455 b | 20.056 ± 0.313 e | 11.522 ± 0.199 k | 13.541 ± 0.000 i | 12.404 ± 0.398 j |
16 | 15.476 ± 0.398 g | 27.396 ± 0.313 a | 24.323 ± 0.085 c | 1.195 ± 0.114 n | 10.384 ± 0.825 l | 5.576 ± 0.000 m |
Catalase (Cat), M O2 | ||||||
0 | 0.167 ± 0.004 h | 0.237 ± 0.004 f | 0.215 ± 0.009 g | 0.167 ± 0.004 h | 0.237 ± 0.004 f | 0.215 ± 0.009 g |
8 | 0.329 ± 0.002 e | 0.531 ± 0.002 b | 0.443 ± 0.009 d | 0.083 ± 0.009 jk | 0.114 ± 0.004 i | 0.096 ± 0.004 j |
16 | 0.447 ± 0.013 d | 0.574 ± 0.009 a | 0.478 ± 0.003 c | 0.066 ± 0.009 l | 0.096 ± 0.004 j | 0.079 ± 0.004 kl |
Urease (Ure), mM N-NH4 | ||||||
0 | 0.741 ± 0.741 e | 2.802 ± 0.026 a | 0.758 ± 0.013 e | 0.741 ± 0.041 e | 2.802 ± 0.026 a | 0.758 ± 0.013 e |
8 | 0.754 ± 0.030 e | 2.031 ± 0.026 b | 0.514 ± 0.000 f | 0.180 ± 0.026 g | 0.951 ± 0.026 d | 0.180 ± 0.026 g |
16 | 0.797 ± 0.045 e | 1.877 ± 0.026 c | 0.540 ± 0.026 f | 0.129 ± 0.026 g | 0.745 ± 0.028 e | 0.129 ± 0.023 g |
Acid phosphatase (AcP), mM PNP | ||||||
0 | 2.569 ± 0.011 a | 2.555 ± 0.013 a | 2.014 ± 0.013 fg | 2.569 ± 0.011 a | 2.555 ± 0.013 a | 2.014 ± 0.013 fg |
8 | 2.114 ± 0.028 de | 2.073 ± 0.051 def | 2.054 ± 0.010 ef | 2.360 ± 0.019 b | 2.341 ± 0.049 b | 1.957 ± 0.019 gh |
16 | 2.106 ± 0.011 de | 2.190 ± 0.010 c | 2.119 ± 0.013 d | 1.550 ± 0.017 j | 1.718 ± 0.059 i | 1.909 ± 0.054 h |
Alkaline phosphatase (AlP), mM PNP | ||||||
0 | 0.406 ± 0.008 h | 0.901 ± 0.002 f | 0.659 ± 0.006 g | 0.406 ± 0.008 h | 0.901 ± 0.002 f | 0.659 ± 0.006 g |
8 | 0.959 ± 0.030 e | 1.483 ± 0.013 b | 0.885 ± 0.011 f | 0.282 ± 0.002 j | 0.650 ± 0.016 g | 0.352 ± 0.002 i |
16 | 1.448 ± 0.025 c | 2.040 ± 0.011 a | 1.312 ± 0.003 d | 0.243 ± 0.006 k | 0.645 ± 0.027 g | 0.355 ± 0.024 i |
β-glucosidase (Glu), mM PNP | ||||||
0 | 0.267 ± 0.003 fg | 0.278 ± 0.002 cde | 0.280 ± 0.002 bcd | 0.267 ± 0.003 fg | 0.278 ± 0.002 cde | 0.280 ± 0.002 bcd |
8 | 0.278 ± 0.001 cde | 0.285 ± 0.005 b | 0.285 ± 0.001 b | 0.263 ± 0.001 g | 0.274 ± 0.006 de | 0.272 ± 0.004 ef |
16 | 0.282 ± 0.001 bc | 0.292 ± 0.001 a | 0.295 ± 0.002 a | 0.254 ± 0.002 i | 0.256 ± 0.003 hi | 0.262 ± 0.003 gh |
Arylsulfatase (Aryl), mM PNS | ||||||
0 | 0.106 ± 0.005 g | 0.215 ± 0.002 c | 0.119 ± 0.002 g | 0.106 ± 0.005 g | 0.215 ± 0.002 c | 0.119 ± 0.002 g |
8 | 0.148 ± 0.012 f | 0.239 ± 0.002 b | 0.150 ± 0.005 f | 0.106 ± 0.005 g | 0.191 ± 0.012 d | 0.116 ± 0.002 g |
16 | 0.155 ± 0.007 f | 0.336 ± 0.002 a | 0.169 ± 0.010 e | 0.063 ± 0.003 h | 0.193 ± 0.002 d | 0.106 ± 0.010 g |
Dose DO/G, cm3 kg−1 of d.m Soil | Diesel Oil (DO) | Gasoline (G) | ||||
---|---|---|---|---|---|---|
Sorbent (S) | ||||||
Control (C) | Dolomite (D) | Perlite (P) | Control (C) | Dolomite (D) | Perlite (P) | |
Total Organic Carbon (Corg) in g kg−1 | ||||||
0 | 7.100 ± 0.110 gh | 8.685 ± 0.325 de | 7.310 ± 0.030 g | 7.100 ± 0.110 gh | 8.685 ± 0.025 de | 7.310 ± 0.030 g |
8 | 8.850 ± 0.240 d | 9.885 ± 0.105 c | 8.515 ± 0.205 e | 7.110 ± 0.090 gh | 8.495 ± 0.025 e | 7.115 ± 0.065 gh |
16 | 10.190 ± 0.000 b | 11.560 ± 0.040 a | 9.605 ± 0.035 c | 6.745 ± 0.015 i | 7.800 ± 0.050 f | 6.820 ± 0.050 i |
Total Nitrogen (Ntotal) in g kg−1 | ||||||
0 | 1.120 ± 0.020 def | 1.110 ± 0.010 ef | 1.105 ± 0.005 ef | 1.120 ± 0.020 def | 1.110 ± 0.020 ef | 1.105 ± 0.015 ef |
8 | 1.215 ± 0.035 b | 1.155 ± 0.015 cd | 1.200 ± 0.010 b | 1.155 ± 0.025 cd | 1.120 ± 0.010 def | 1.055 ± 0.015 g |
16 | 1.275 ± 0.015 a | 1.185 ± 0.005 bc | 1.280 ± 0.020 a | 1.265 ± 0.020 b | 1.135 ± 0.015 de | 1.090 ± 0.010 fg |
C:N | ||||||
0 | 6.339 | 7.824 | 6.615 | 6.339 | 7.824 | 6.615 |
8 | 7.284 | 8.558 | 7.096 | 6.156 | 7.585 | 6.744 |
16 | 7.992 | 9.755 | 7.504 | 5.332 | 6.872 | 6.257 |
pHKCl | ||||||
0 | 4.300 ± 0.000 i | 6.450 ± 0.050 d | 4.300 ± 0.000 i | 4.300 ± 0.000 i | 6.450 ± 0.050 d | 4.300 ±0.000 i |
8 | 4.550 ± 0.005 h | 6.550 ± 0.050 b | 4.600 ± 0.000 g | 4.300 ± 0.000 i | 6.600 ± 0.000 a | 4.300 ± 0.000 i |
16 | 4.900 ± 0.000 e | 6.500 ± 0.000 c | 4.800 ± 0.005 f | 4.300 ± 0.000 i | 6.600 ± 0.000 a | 4.300 ± 0.000 i |
Hydrolytic Acidity (HAC) in mmol(+) kg−1 soil | ||||||
0 | 35.250 ± 0.750 a | 11.625 ± 0.375 d | 35.625 ± 0.375 a | 35.250 ± 0.750 a | 11.625 ± 0.375 d | 35.625 ± 0.375 a |
8 | 33.000 ± 3.000 b | 11.250 ± 0.000 d | 28.500 ± 0.750 c | 35.250 ± 0.000 a | 10.500 ± 0.000 d | 35.625 ± 0.375.a |
16 | 27.875 ± 0.573 c | 12.000 ± 0.000 d | 28.875 ± 0.375 c | 35.625 ± 0.375 a | 10.875 ± 0.375 d | 36.000 ± 0.000 a |
Total Exchangeable Base Cations (EBC) in mmol(+) kg−1 soil | ||||||
0 | 44.075 ± 3.075 de | 214.225 ± 7.175 bc | 45.100 ± 0.000 de | 44.075 ± 3.075 de | 214.225 ± 7.175 bc | 45.100 ± 0.000 de |
8 | 47.150 ± 2.050 de | 238.825 ± 7.175 a | 44.075 ± 1.025 de | 43.563 ± 0.512 e | 211.150 ± 10.250 c | 49.200 ± 0.000 de |
16 | 54.325 ± 3.075 d | 235.750 ± 4.100 a | 43.050 ± 2.050 e | 43.050 ± 0.000 e | 222.425 ± 11.275 b | 46.125 ± 1.025 de |
Total Cation Exchange Capacity of Soil (CEC) in mmol(+) kg−1 soil | ||||||
0 | 79.325 ± 3.825 de | 225.850 ± 7.550 bc | 80.725 ± 0.375 de | 79.325 ± 3.825 de | 225.850 ± 7.550 bc | 80.725 ± 0.375 de |
8 | 80.150 ± 2.656 de | 250.075 ± 7.175 a | 72.575 ± 1.025 e | 78.813 ± 0.512 de | 221.650 ± 10.250 c | 84.825 ± 0.375 d |
16 | 82.200 ± 2.735 de | 247.750 ± 4.100 a | 71.925 ± 2.425 e | 78.675 ± 0.375 de | 233.300 ± 10.900 b | 82.125 ± 1.025 de |
Base Cations Saturation Ratio in Soil (BS) in % | ||||||
0 | 54.170 ± 1.171 f | 92.539 ± 0.006 a | 54.507 ± 0.253 f | 54.170 ± 1.171 f | 92.539 ± 0.006 a | 54.507 ± 0.253 f |
8 | 57.424 ± 2.813 cd | 93.170 ± 0.126 a | 59.244 ± 0.541 c | 53.924 ± 0.284 f | 92.933 ± 0.214 a | 56.588 ± 0.250 de |
16 | 64.445 ± 1.579 b | 92.835 ± 0.078 a | 58.376 ± 0.813 cd | 53.385 ± 0.254 f | 93.002 ± 0.370 a | 54.790 ± 0.534 ef |
Ya | Yr | SPAD | Deh | Cat | Ure | AcP | AlP | Aryl | Glu | Corg | Ntotal | pH | HAC | EBC | CEC | BS | BA1 | BA2 | |||
Ya | Diesel oil | 1.000 | 0.907 * | −0.708 * | 0.879 * | 0.774 * | 0.521 * | 0.809 * | 0.492 * | 0.351 * | 0.791 * | 0.394 * | −0.688 | 0.063 | −0.077 | 0.068 | 0.067 | 0.091 | 0.856 * | 0.776 * | Gasoline |
Yr | 0.973 * | 1.000 | −0.673 * | 0.777 * | 0.824 * | 0.541 * | 0.758 * | 0.467 * | 0.246 | 0.677 * | 0.338 * | −0.473 | 0.032 | −0.048 | 0.032 | 0.029 | 0.050 | 0.770 * | 0.702 * | ||
SPAD | 0.802 * | 0.781 * | 1.000 | −0.585 * | −0.660 * | −0.301 | −0.384 * | −0.355 * | −0.068 | −0.736 * | −0.148 | 0.527 | 0.163 | −0.153 | 0.157 | 0.158 | 0.137 | −0.558 * | −0.492 * | ||
Deh | −0.343 * | −0.310 | −0.276 | 1.000 | 0.851 * | 0.783 * | 0.746 * | 0.779 * | 0.662 * | 0.794 * | 0.701 * | −0.560 | 0.413 * | −0.429 * | 0.429 * | 0.428 * | 0.441 * | 0.996 * | 0.968 * | ||
Cat | −0.872 * | −0.825 * | −0.689 * | 0.717 * | 1.000 | 0.788 * | 0.573 * | 0.757 * | 0.435 * | 0.735 * | 0.510 * | −0.331 | 0.227 | −0.242 | 0.240 | 0.240 | 0.246 | 0.863 * | 0.837 * | ||
Ure | 0.239 | 0.224 | 0.274 | 0.558 * | 0.088 | 1.000 | 0.557 * | 0.877 * | 0.761 * | 0.528 * | 0.824 * | −0.186 | 0.655 * | −0.668 * | 0.671 * | 0.671 * | 0.674 * | 0.835 * | 0.900 * | ||
AcP | 0.640 * | 0.693 * | 0.532 * | −0.141 | −0.555 * | 0.430 * | 1.000 | 0.367 * | 0.373 * | 0.566 * | 0.477 * | −0.374 | 0.181 | −0.202 | 0.180 | 0.176 | 0.194 | 0.754 * | 0.724 * | ||
AlP | −0.740 * | −0.695 * | −0.689 * | 0.718 * | 0.899 * | 0.331 * | −0.367 * | 1.000 | 0.876 * | 0.585 * | 0.875 * | −0.333 | 0.771 * | −0.776 * | 0.783 * | 0.783 * | 0.786 * | 0.811 * | 0.863 * | ||
Aryl | −0.372 * | −0.340 * | −0.274 | 0.835 * | 0.674 * | 0.689 * | −0.014 | 0.844 * | 1.000 | 0.409 * | 0.933 * | −0.370 | 0.933 * | −0.935 * | 0.942 * | 0.942 * | 0.946 * | 0.695 * | 0.768 * | ||
Glu | −0.685 * | −0.691 * | −0.687 * | 0.750 * | 0.822 * | 0.052 | −0.591 * | 0.760 * | 0.576 * | 1.000 | 0.499 * | −0.606 | 0.154 | −0.160 | 0.157 | 0.156 | 0.182 | 0.777 * | 0.744 * | ||
Corg | −0.767 * | −0.720 * | −0.703 * | 0.671 * | 0.883 * | 0.334 * | −0.299 | 0.982 * | 0.819 * | 0.718 * | 1.000 | −0.236 | 0.896 * | −0.903 * | 0.898 * | 0.897 * | 0.908 * | 0.741 * | 0.831 * | ||
Ntotal | −0.832 * | −0.803 * | −0.846 * | 0.067 | 0.602 * | −0.455 * | −0.459 * | 0.476 * | 0.013 | 0.513 * | 0.542 * | 1.000 | −0.084 | 0.079 | −0.095 | −0.098 | −0.122 | −0.522 * | −0.452 * | ||
pH | −0.123 | −0.104 | −0.021 | 0.792 * | 0.477 * | 0.914 * | 0.178 | 0.650 * | 0.885 * | 0.364 * | 0.642 * | −0.181 | 1.000 | −0.999 * | 0.997 * | 0.996 * | 0.998 * | 0.461 * | 0.570 * | ||
HAC | 0.152 | 0.139 | 0.026 | −0.810 * | −0.509 * | −0.892 * | −0.160 | −0.648 * | −0.876 * | −0.391 * | −0.643 * | 0.149 | −0.989 * | 1.000 | −0.997 * | −0.996 * | −0.998 * | −0.477 * | −0.585 * | ||
EBC | −0.016 | 0.006 | 0.094 | 0.752 * | 0.390 * | 0.923 * | 0.212 | 0.578 * | 0.870 * | 0.265 | 0.553 * | −0.331 | 0.980 * | −0.960 * | 1.000 | 1.000 * | 0.998 * | 0.476 * | 0.585 * | ||
CEC | 0.002 | 0.024 | 0.109 | 0.740 * | 0.373 * | 0.922 * | 0.217 | 0.565 * | 0.865 * | 0.248 | 0.538 * | −0.352 | 0.974 * | −0.949 * | 0.999 * | 1.000 | 0.998 * | 0.476 * | 0.584 * | ||
BS | −0.078 | −0.065 | 0.032 | 0.752 * | 0.434 * | 0.928 * | 0.199 | 0.618 * | 0.873 * | 0.309 | 0.608 * | −0.243 | 0.994 * | −0.987 * | 0.987 * | 0.981 * | 1.000 | 0.488 * | 0.596 * | ||
BA1 | −0.319 | −0.287 | −0.253 | 0.991 * | 0.698 * | 0.649 * | −0.072 | 0.744 * | 0.884 * | 0.704 * | 0.705 * | 0.034 | 0.862 * | −0.874 * | 0.823 * | 0.812 * | 0.828 * | 1.000 | 0.985 * | ||
BA2 | −0.501 * | −0.451 * | −0.435 * | 0.938 * | 0.813 * | 0.566 * | −0.151 | 0.896 * | 0.944 * | 0.747 * | 0.869 * | 0.202 | 0.834 * | −0.837 * | 0.786 * | 0.775 * | 0.800 * | 0.957 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. The Potential for Restoring the Activity of Oxidoreductases and Hydrolases in Soil Contaminated with Petroleum Products Using Perlite and Dolomite. Appl. Sci. 2024, 14, 3591. https://doi.org/10.3390/app14093591
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. The Potential for Restoring the Activity of Oxidoreductases and Hydrolases in Soil Contaminated with Petroleum Products Using Perlite and Dolomite. Applied Sciences. 2024; 14(9):3591. https://doi.org/10.3390/app14093591
Chicago/Turabian StyleWyszkowska, Jadwiga, Agata Borowik, Magdalena Zaborowska, and Jan Kucharski. 2024. "The Potential for Restoring the Activity of Oxidoreductases and Hydrolases in Soil Contaminated with Petroleum Products Using Perlite and Dolomite" Applied Sciences 14, no. 9: 3591. https://doi.org/10.3390/app14093591
APA StyleWyszkowska, J., Borowik, A., Zaborowska, M., & Kucharski, J. (2024). The Potential for Restoring the Activity of Oxidoreductases and Hydrolases in Soil Contaminated with Petroleum Products Using Perlite and Dolomite. Applied Sciences, 14(9), 3591. https://doi.org/10.3390/app14093591