Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Experimental
2.2.1. General Method for the Synthesis of 3-Aminotricyclo[3.3.1.13,7]decan-1-ol Derivatives (2, 3), Tricyclo[3.3.1.13,7]decan-1-amine Derivatives (5–11), 1-(Tricyclo[3.3.1.13,7]dec-1-yl)methanamine Derivatives (13–17)
- 3-[(2,3-dimethoxybenzylidene)amino]tricyclo[3.3.1.13,7]decan-1-ol (2)
- 3-[(2,4-dimethoxybenzylidene)amino]tricyclo[3.3.1.13,7]decan-1-ol (3)
- 2-ethoxy-6-[(tricyclo[3.3.1.13,7]dec-1-ylimine)methyl]phenol (5)
- 2-ethoxy-4-[(tricyclo[3.3.1.13,7]dec-1-ylimine)methyl]phenol (6)
- 1-(2-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-yl)methanimine (7)
- 1-(3-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-yl)methanimine (8)
- 1-(4-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-yl)methanimine (9)
- 1-(2-chloro-5-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-yl)methanimine (10)
- N-(tricyclo[3.3.1.13,7]dec-1-yl)tricyclo[3.3.1.13,7]decan-2-imine (11)
- 1-(2-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-ylmethyl)methanimine (13)
- 1-(3-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-ylmethyl)methanimine (14)
- 1-(4-nitrophenyl)-N-(tricyclo[3.3.1.13,7]dec-1-ylmethyl)methanimine (15)
- 5-bromo-N-(tricyclo[3.3.1.13,7]dec-1-ylmethyl)tricyclo[3.3.1.13,7]decan-2-imine (16)
- 5-hydroxy-N-(tricyclo[3.3.1.13,7]dec-1-ylmethyl)tricyclo[3.3.1.13,7]decan-2-imine (17)
2.2.2. Synthesis of Hydrazide of 1-Adamantanecarboxylic Acid (19)
- tricyclo[3.3.1.13,7]decane-1-carbohydrazide (19)
Synthesis of Hydrazide–Hydrazones of 1-Adamantanecarbarboxylic Acid (20–23)
- N-[(4-hydroxy-3-ethoxyphenyl)methylidene]tricyclo[3.3.1.13,7]decane-1-carbohydrazide (20)
- N-[(2-chloro-5-nitrophenyl)methylidene]tricyclo[3.3.1.13,7]decane-1-carbohydrazide (21)
- N-(5-bromotricyclo[3.3.1.13,7]dec-2-ylidene)tricyclo[3.3.1.13,7]decane-1-carbohydrazide (22)
- N-(5-hydroxytricyclo[3.3.1.13,7]dec-2-ylidene)tricyclo[3.3.1.13,7]decane-1-carbohydrazide (23)
2.3. Antimicrobial Activity Assays
Microbiological Material and In Vitro Screening Method
2.4. Cytotoxicity
2.4.1. Cell Lines
2.4.2. MTT Analysis
3. Results
3.1. Chemistry
3.2. Antimicrobial Activity Assays
3.3. Cytotoxicity
4. Discussion
4.1. Chemistry
4.2. NMR Spectra Analysis
4.3. Antimicrobial Activity Assays
4.4. Cytotoxicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lis-Cieplak, A. Adamantane derivatives—Variety of biological activities. A review of medications approved in Poland and potential drugs. Biul. Wydz. Farm. WUM 2012, 3, 18–25. [Google Scholar]
- Ickes, D.E.; Venetta, T.M.; Phonphok, Y.; Rosenthal, K.S. Tromantadine inhibits a late step in herpes simplex virus type 1 replication and syncytium formation. Antivir. Res. 1990, 14, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, G.; Kolocouri, N.; Naesens, L.; De Clercq, E. Design and synthesis of 1,2-annulated adamantane piperidines with anti-influenza virus activity. Bioorg. Med. Chem. 2009, 17, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Zarubaev, V.V.; Golod, E.L.; Anfimov, P.M.; Shtro, A.A.; Saraev, V.V.; Gavrilov, A.S.; Logvinov, A.V.; Kiselev, O.I. Synthesis and anti-viral activity of azolo-adamantanes against influenza A virus. Bioorg. Med. Chem. 2010, 18, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Shibnev, V.A.; Garaev, T.M.; Deryabin, P.G.; Finogenova, M.P.; Mishin, D.V. Synthesis and antiviral activity of adamantylpeptides against hepatitis C virus. Pharm. Chem. J. 2015, 49, 449–454. [Google Scholar] [CrossRef]
- Suslov, E.; Zarubaev, V.V.; Slita, A.V.; Ponomarev, K.; Korchagina, D.; Ayine-Tora, D.M.; Reynisson, J.; Volcho, K.; Salakhutdinov, N. Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg. Med. Chem. Lett. 2017, 27, 4531–4535. [Google Scholar] [CrossRef] [PubMed]
- Pagire, S.H.; Pagire, H.S.; Lee, G.B.; Han, S.-J.; Kwak, H.J.; Kim, J.Y.; Kim, K.Y.; Rhee, S.D.; Ryu, J.I.; Song, J.S.; et al. Discovery and optimization of adamantane carboxylic acid derivatives as potent diacylglycerol acyltransferase 1 inhibitors for the potential treatment of obesity and diabetes. Eur. J. Med. Chem. 2015, 101, 716–735. [Google Scholar] [CrossRef]
- Koyanagawa, N.; Miyoshi, H.; Ono, K.; Nakamura, A.; Cho, K.Y.; Yamamoto, K.; Takano, Y.; Dan-noura, M.; Atsumi, T. Comparative effects of vildagliptin and sitagliptin determined by continuous glucose monitoring in patients with type 2 diabetes mellitus. Endocr. J. 2016, 63, 747–753. [Google Scholar] [CrossRef]
- Amblee, A.; Lious, D.; Fogelfeld, L. Combination of Saxagliptin and Metformin Is Effective as Initial Therapy in New-Onset Type 2 Diabetes Mellitus With Severe Hyperglycemia. J. Clin. Endocrinol. Metab. 2016, 101, 2528–2535. [Google Scholar] [CrossRef] [PubMed]
- Uchii, M.; Kimoto, N.; Sakai, M.; Kitayama, T.; Kunori, S. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats. Eur. J. Pharmacol. 2016, 783, 56–63. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, F.; Diao, H.; Wu, R. Covalent Inhibition Mechanism of Antidiabetic Drugs-Vildagliptin vs. Saxagliptin. ACS Catal. 2019, 9, 2292–2302. [Google Scholar] [CrossRef]
- Orzeszko, A.; Kamińska, B.; Orzeszko, G.; Starościak, B.J. Synthesis and antimicrobial activity of new adamantane derivatives II. Il Farm. 2000, 55, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Orzeszko, A.; Kamińska, B.; Starościak, B.J. Synthesis and antimicrobial activity of new adamantane derivatives III. Il Farm. 2002, 57, 61–624. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahaibi, L.H.; Hassan, H.M.; Abo-Kamar, A.M.; Ghabbour, H.A.; El-Emam, A.A. Adamantane-Isothiourea Hybrid Derivatives: Synthesis, Characterization, In Vitro Antimicrobial, and In Vivo Hypoglycemic Activities. Molecules 2017, 22, 710. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.; Phan, T.P.D.; Phan, D.C.; Vu, B.D. Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety. Molecules 2019, 24, 4000. [Google Scholar] [CrossRef] [PubMed]
- Chinnapattu, M.; Sathiyanarayanan, K.I.; Iyer, P.S. Synthesis and biological evaluation of adamantane-based aminophenols as a novel class of antiplasmodial agents. Bioorg. Med. Chem. Lett. 2015, 25, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Srbljanović, J.; Štajner, T.; Konstantinović, J.; Terzić-Jovanović, N.; Uzelac, A.; Bobić, B.; Šolaja, B.A.; Djurković-Djaković, O. Examination of the antimalarial potential of experimental aminoquinolines: Poor in vitro effect does not preclude in vivo efficacy. Inter. J. Antimicrob. Agents 2017, 50, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Fytas, C.; Zoidis, G.; Tsotinis, A.; Fytas, G.; Khan, M.A.; Akhtar, S.; Rahman, K.M.; Thurston, D.E. Novel 1-(2-aryl-2-adamantyl)piperazine derivatives with antiproliferative activity. Eur. J. Med. Chem. 2015, 93, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Pandey, V.; Mohan, C.D.; Chia, Y.T.; Rangappa, S.; Mathai, J.; Baburajeev, C.P.; Paricharak, S.; Mervin, L.H.; Bulusu, K.C.; et al. Novel Adamantanyl-Based Thiadiazolyl Pyrazoles Targeting EGFR in Triple-Negative Breast Cancer. ACS Omega 2016, 1, 1412–1424. [Google Scholar] [CrossRef]
- Ali, A.G.; Mohamed, M.F.; Abdelhamid, A.O.; Mohamed, M.S. A novel adamantane thiadiazole derivative induces mitochondria-mediated apoptosis in lung carcinoma cell line. Bioorg. Med. Chem. 2017, 25, 241–253. [Google Scholar] [CrossRef]
- Bao, X.; Sun, Y.; Bao, C.; Zhang, J.; Zou, S.; Yang, J.; Wu, C.; Wang, L.; Chen, G. Design, synthesis and evaluation of N-hydroxypropenamides based on adamantane to overcome resistance in NSCLC. Bioorg. Chem. 2019, 86, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Piérard, G.E.; Piérard-Franchimont, C.; Paquet, P.; Quatresooz, P. Spotlight on adapalene. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur. J. Med. Chem. 2009, 44, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Geddes-McAlister, J.; Shapiro, R.S. New pathogens, new tricks: Emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann. N. Y. Acad. Sci. 2019, 1435, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Humeniuk, N.; Zelena, L.; Vrynchanu, N.; Ishchenko, L.; Bukhtiarova, T.; Korotkij, Y.; Vazhnichaya, E. Effect of adamantane derivative on expression of biofilm-associated genes in methicillin-resistant Staphylococcus aureus. Med. Drug Discov. 2023, 18, 100155. [Google Scholar] [CrossRef]
- Dudikova, D.M.; Vrynchanu, N.O.; Nosar, V.I. Alteration of Pseudomonas aeruginosa respiration by 4-(1-adamantyl)-phenol derivative. Biologija 2018, 64, 228–234. [Google Scholar] [CrossRef]
- Tan, F.; She, P.; Zhou, L.; Liu, Y.; Chen, L.; Luo, Z.; Wu, Y. Bactericidal and Anti-biofilm Activity of the Retinoid Compound CD437 against Enterococcus faecalis. Front. Microbiol. 2019, 10, 2301. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, Ł. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res. 2017, 26, 287–301. [Google Scholar] [CrossRef]
- Popiołek, Ł. Updated Information on Antimicrobial Activity of Hydrazide–Hydrazones. Int. J. Mol. Sci. 2021, 22, 9389. [Google Scholar] [CrossRef]
- Popiołek, Ł.; Rysz, B.; Biernasiuk, A.; Wujec, M. Synthesis of promising antimicrobial agents: Hydrazide-hydrazones of 5-nitrofuran-2-carboxylic acid. Chem. Biol. Drug. Des. 2020, 95, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, Ł.; Tuszyńska, K.; Biernasiuk, A. Searching for novel antimicrobial agents among hydrazide-hydrazones of 4-iodosalicylic acid. Biomed. Pharmacother. 2022, 153, 113302. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, Ł.; Gawrońska-Grzywacz, M.; Dziduch, A.; Biernasiuk, A.; Piątkowska-Chmiel, I.; Herbet, M. Design, Synthesis, and In Vitro and In Vivo Bioactivity Studies of Hydrazide–Hydrazones of 2,4-Dihydroxybenzoic Acid. Int. J. Mol. Sci. 2023, 24, 17481. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. EUCAST discussion document E. Dis 5.1. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Pham, V.H.; Phan, T.P.D.; Phan, D.C.; Vu, B.D. Synthesis and Bioactivity of Thiosemicarbazones Containing Adamantane Skeletons. Molecules 2020, 25, 324. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.; Al-Wahaibi, L.H.; Shehatou, G.S.G.; El-Emam, A.A. Adamantane-linked isothiourea derivatives suppress the growth of experimental hepatocellular carcinoma via inhibition of TLR4-MyD88-NF-κB signaling. Am. J. Cancer. Res. 2021, 11, 350–369. [Google Scholar]
- Turk-Erbul, B.; Karaman, E.F.; Duran, G.N.; Ozbil, M.; Ozden, S.; Goktas, F. Synthesis, in vitro cytotoxic and apoptotic effects, and molecular docking study of novel adamantane derivatives. Arch. Pharm. 2021, 354, e2000256. [Google Scholar] [CrossRef]
Species | MIC (MBC or MFC) [µg/mL] and {MBC/MIC or MFC/MIC} of Tested Compounds and Standard Antimicrobial Agents | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 14 | 15 | 17 | 19 | 20 | 22 | 23 | CIP/ VA */ NY ** | NIT | CFX | APC | ||
Gram-positive bacteria | Staphylococcus aureus ATCC 25923 | - | - | - | - | - | - | 125 (250) {2} | 1000 (2000) {2} | - | 250 (1000) {4} | 500 (>1000) {>2} | 1000 (>1000) {>1} | 500 (1000) {2} | 1000 (>1000) {>1} | - | - | 0.48 (0.48) {1} | 15.62 (15.62) | 0.49 | nd |
Staphylococcus aureus ATCC 6538 | - | - | - | - | - | 1000 (1000) {1} | 250 (>1000) {>4} | 1000 (>1000) {>1} | - | 1000 (>1000) {>1} | 500 (>1000) {>2} | - | 250 (1000) {4} | - | - | - | 0.24 (0.24) {1} | 15.62 (15.62) | 0.98 | nd | |
Staphylococcus aureus ATCC 43300 | - | - | - | - | - | - | 500 (1000) {2} | - | - | 1000 (1000) {1} | 1000 (>1000) {>1} | - | 500 (500) {1} | - | - | - | 0.24 (0.24) {1} | 7.81 (15.62) | nd | nd | |
Staphylococcus epidermidis ATCC 12228 | - | - | - | - | 250 (1000) {4} | 500 (1000) {2} | 62.5 (250) {4} | 500 (1000) {4} | - | 500 (500) {1} | 125 (500) {4} | 1000 (>1000) {>1} | 250 (1000) {4} | 1000 (>1000) {>1} | - | - | 0.12 (0.12) {1} | 3.91 (7.81) | 0.24 | nd | |
Enterococcus faecalis ATCC 29212 | - | - | 1000 (>1000) {>1} | - | 1000 (>1000) {>1} | - | 500 (>1000) {>2} | - | - | 1000 (>1000) {>1} | 500 (>1000) {>2} | - | 500 (1000) {2} | - | - | - | 0.98 * (1.95) {2} | nd | nd | nd | |
Micrococcus luteus ATCC 10240 | - | - | 500 (1000) {2} | 500 (>1000) {>2} | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 500 (500) {1} | - | - | 500 (1000) {2} | 500 (>1000) {>2} | 1000 (1000) {1} | 125 (500) {4} | 500 (>1000) {>2} | 1000 (>1000) {>1} | - | 0.98 (1.95) {2} | 62.5 (62.5) | 0.98 | nd | |
Bacillus subtilis ATCC 6633 | 1000 (>1000) {>1} | - | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 500 (1000) {2} | 250 (500) {2} | 1000 (>1000) {>1} | - | 500 (500) {1} | 500 (>1000) {>2} | 1000 (>1000) {>1} | 250 (250) {1} | 250 (500) {2} | - | - | 0.03 (0.03) {1} | 3.91 (3.91) | 15.62 | 62.5 | |
Bacillus cereus ATCC 10876 | - | - | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | 500 (>1000) {>2} | 1000 (>1000) {>1} | - | 500 (>1000) {>2} | 1000 (>1000) {>1} | - | 125 (250) {2} | 500 (1000) {2} | - | - | 0.06 (0.12) {2} | 7.81 (15.62) | 31.25 | nd | |
Gram-negative bacteria | Bordetella bronchiseptica ATCC 4617 | - | - | 500 (1000) {2} | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 500 (>1000) {>2} | 250 (1000) {4} | - | - | 500 (1000) {2} | 1000 (>1000) {>1} | 500 (1000) {2} | 125 (500) {4} | 500 (1000) {2} | - | - | 0.98 (0.98) {1} | 125 (>1000) | nd | nd |
Klebsiella pneumoniae ATCC 13883 | - | - | - | - | - | - | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | - | - | 500 (500) {1} | - | - | - | 0.12 (0.24) {2} | 15.62 (31.25) | nd | nd | |
Proteus mirabilis ATCC 12453 | - | - | - | - | - | - | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | - | 1000 (>1000) {>1} | 500 (1000) {2} | - | - | - | 0.03 (0.03) {1) | 62.5 (125) | nd | nd | |
Salmonella typhimurium ATCC 14028 | - | - | 1000 (1000) {1} | - | - | - | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | - | - | 500 (500) {1} | - | - | - | 0.06 (0.06) {1} | 31.25 (62.5) | nd | nd | |
Escherichia coli ATCC 25922 | - | - | 500 (1000) {2} | - | - | - | 1000 (1000) {1} | - | - | 1000 (>1000) {>1} | - | 1000 (>1000) {>1} | 250 (500) {2} | - | - | - | 0.004 (0.008) {2} | 7.81 (15.62) | nd | nd | |
Pseudomonas aeruginosa ATCC 9027 | - | - | - | - | - | - | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | - | 1000 (>1000) {>1} | 125 (250) {2} | - | - | - | 0.48 (0.98) {2} | - | nd | nd | |
Fungi | Candida albicans ATCC 2091 | 500 (1000) {2} | 1000 (1000) {1} | 125 (250) {2} | 1000 (>1000) {>1} | 1000 (1000) {1} | 250 (500) {2} | 125 (500) {4} | 500 (1000) {2} | 1000 (1000) {1} | 250 (250) {1} | 250 (500) {2} | 1000 (1000) {1} | 1000 (>1000) {>1} | - | - | 1000 (>1000) {>1} | 0.24 ** (0.24) {1} | na | na | na |
Candida albicans ATCC 10231 | 500 (500) {1} | 1000 (1000) {1} | 62.5 (125) {2} | 1000 (>1000) {>1} | 1000 (1000) {1} | 250 (500) {2} | 125 (250) {2} | 500 (1000) {2} | 1000 (>1000) {>1} | 125 (250) {2} | 250 (500) {2} | 1000 (>1000) {>1} | 500 (>1000) {>2} | - | - | 1000 (>1000) {>1} | 0.48 ** (0.48) {1} | na | na | na | |
Candida parapsilosis ATCC 22019 | 250 (1000) {4} | 1000 (1000) {1} | 250 (500) {2} | 1000 (>1000) {>1} | 1000 (1000) {1} | 250 (500) {2} | 250 (250) {1} | 500 (1000) {2} | 1000 (>1000) {>1} | 125 (250) {2} | 250 (500) {2} | 1000 (1000) {1} | 1000 (>1000) {>1} | - | - | - | 0.24 ** (0.48) {2} | na | na | na | |
Candida glabrata ATCC 90030 | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 250 (500) {2} | - | - | 1000 (1000) {1} | 250 (250) {1} | 1000 (1000) {1} | 1000 (1000) {1} | 500 (500) {1} | 500 (500) {1} | 1000 (1000) {1} | - | - | - | - | 0.24 ** (0.48) {2} | na | na | na | |
Candida krusei ATCC 14243 | 1000 (1000) {1} | 1000 (1000) {1} | 500 (1000) {2} | 1000 (>1000) {>1} | 1000 (>1000) {>1} | 500 (1000) {2} | 125 (500) {4} | 500 (1000) {2} | 1000 (1000) {1} | 250 (250) {1} | 250 (500) {2} | 500 (1000) {2} | 125 (1000) {8} | - | - | 1000 (>1000) {>1} | 0.24 ** (0.24) {1} | na | na | na |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 91 | 104 | 89 | 95 | 87 | 112 | 103 | 96 | 101 | 94 | 96 | 103 |
5 | 96 | 104 | 101 | 97 | 100 | 106 | 118 | 109 | 98 | 96 | 109 | 104 |
10 | 94 | 89 | 96 | 92 | 95 | 81 | 103 | 107 | 96 | 91 | 93 | 111 |
25 | 97 | 97 | 78 | 61 | 74 | 72 | 64 | 69 | 87 | 96 | 94 | 85 |
50 | 66 | 64 | 55 | 63 | 79 | 86 | 78 | 89 | 59 | 85 | 53 | 51 |
100 | 76 | 87 | 66 | 68 | 54 | 47 | 59 | 62 | 79 | 84 | 85 | 91 |
150 | 81 | 84 | 98 | 91 | 88 | 79 | 94 | 92 | 86 | 88 | 93 | 99 |
200 | 76 | 79 | 98 | 89 | 85 | 73 | 77 | 69 | 80 | 97 | 99 | 101 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 97 | 101 | 108 | 102 | 98 | 95 | 97 | 101 | 109 | 98 | 105 | 100 |
5 | 113 | 100 | 98 | 97 | 93 | 116 | 110 | 99 | 104 | 109 | 93 | 98 |
10 | 78 | 95 | 82 | 100 | 98 | 91 | 87 | 90 | 107 | 96 | 93 | 88 |
25 | 89 | 83 | 70 | 79 | 69 | 61 | 75 | 69 | 88 | 71 | 77 | 68 |
50 | 55 | 53 | 75 | 66 | 64 | 59 | 61 | 61 | 64 | 66 | 58 | 62 |
100 | 68 | 74 | 62 | 61 | 51 | 42 | 41 | 39 | 56 | 77 | 50 | 39 |
150 | 64 | 76 | 63 | 84 | 56 | 63 | 62 | 88 | 79 | 74 | 89 | 75 |
200 | 67 | 71 | 79 | 82 | 67 | 89 | 74 | 61 | 67 | 70 | 78 | 83 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 106 | 93 | 100 | 112 | 105 | 89 | 93 | 101 | 95 | 113 | 103 | 102 |
5 | 94 | 88 | 96 | 97 | 105 | 100 | 101 | 88 | 97 | 103 | 112 | 94 |
10 | 93 | 96 | 104 | 100 | 102 | 93 | 88 | 91 | 94 | 98 | 99 | 103 |
25 | 94 | 73 | 85 | 87 | 93 | 98 | 100 | 84 | 96 | 87 | 88 | 78 |
50 | 93 | 81 | 75 | 67 | 94 | 106 | 114 | 125 | 101 | 112 | 98 | 96 |
100 | 86 | 75 | 98 | 76 | 88 | 101 | 102 | 98 | 101 | 94 | 93 | 74 |
150 | 101 | 89 | 83 | 79 | 103 | 87 | 96 | 96 | 87 | 81 | 89 | 80 |
200 | 73 | 78 | 96 | 74 | 83 | 89 | 97 | 74 | 82 | 89 | 84 | 85 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 99 | 108 | 102 | 93 | 76 | 101 | 99 | 87 | 93 | 85 | 88 | 100 |
5 | 88 | 100 | 102 | 103 | 107 | 100 | 93 | 99 | 86 | 88 | 108 | 102 |
10 | 73 | 79 | 85 | 83 | 97 | 104 | 88 | 96 | 99 | 94 | 83 | 97 |
25 | 76 | 71 | 94 | 101 | 88 | 67 | 87 | 86 | 78 | 59 | 77 | 89 |
50 | 67 | 79 | 89 | 88 | 68 | 73 | 87 | 81 | 97 | 81 | 74 | 63 |
100 | 54 | 65 | 68 | 89 | 78 | 98 | 78 | 99 | 89 | 71 | 62 | 88 |
150 | 78 | 67 | 63 | 68 | 72 | 89 | 57 | 61 | 89 | 91 | 78 | 84 |
200 | 87 | 79 | 76 | 85 | 88 | 92 | 70 | 67 | 75 | 81 | 77 | 74 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 117 | 107 | 98 | 105 | 102 | 107 | 95 | 92 | 88 | 94 | 112 | 101 |
5 | 123 | 104 | 101 | 97 | 100 | 86 | 85 | 91 | 82 | 96 | 110 | 104 |
10 | 112 | 89 | 68 | 92 | 85 | 81 | 83 | 84 | 96 | 80 | 83 | 84 |
25 | 79 | 67 | 60 | 76 | 89 | 103 | 69 | 64 | 59 | 74 | 65 | 58 |
50 | 83 | 64 | 75 | 63 | 89 | 67 | 107 | 97 | 83 | 83 | 97 | 104 |
100 | 87 | 84 | 101 | 88 | 94 | 119 | 78 | 86 | 79 | 95 | 104 | 79 |
150 | 76 | 84 | 98 | 104 | 88 | 79 | 94 | 92 | 63 | 78 | 81 | 85 |
200 | 67 | 74 | 78 | 91 | 98 | 98 | 101 | 113 | 72 | 97 | 99 | 81 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 78 | 108 | 102 | 78 | 96 | 93 | 87 | 100 | 98 | 83 | 104 | 101 |
5 | 98 | 91 | 98 | 84 | 87 | 100 | 109 | 87 | 89 | 94 | 88 | 102 |
10 | 102 | 102 | 95 | 98 | 93 | 94 | 98 | 81 | 86 | 94 | 83 | 100 |
25 | 73 | 84 | 94 | 86 | 88 | 106 | 87 | 85 | 51 | 59 | 89 | 77 |
50 | 67 | 79 | 89 | 88 | 91 | 101 | 89 | 107 | 87 | 92 | 68 | 63 |
100 | 87 | 73 | 43 | 81 | 112 | 104 | 78 | 99 | 89 | 102 | 87 | 83 |
150 | 68 | 71 | 75 | 68 | 102 | 97 | 75 | 88 | 73 | 69 | 71 | 84 |
200 | 74 | 78 | 76 | 85 | 94 | 92 | 84 | 72 | 75 | 81 | 86 | 94 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 89 | 107 | 98 | 105 | 98 | 78 | 95 | 101 | 78 | 96 | 101 | 97 |
5 | 98 | 79 | 103 | 111 | 100 | 96 | 75 | 78 | 89 | 78 | 84 | 101 |
10 | 84 | 96 | 98 | 82 | 85 | 83 | 88 | 101 | 96 | 87 | 93 | 96 |
25 | 96 | 73 | - | 87 | 64 | 72 | 93 | 78 | 59 | 84 | 76 | 68 |
50 | 61 | 77 | 53 | 58 | 69 | 79 | 84 | 101 | 94 | 85 | 87 | 107 |
100 | 74 | 76 | 84 | 87 | 94 | 81 | 74 | 86 | 90 | 97 | 74 | 88 |
150 | 81 | 65 | 98 | 78 | 71 | 69 | 89 | 91 | 106 | 92 | 81 | 73 |
200 | 78 | 93 | 71 | 89 | 66 | 89 | 71 | 90 | 78 | 73 | 99 | 75 |
Compound No/Concentration (µM) | 7 | 10 | 21 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat: | Repeat: | Repeat: | ||||||||||
No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | No 1 | No 2 | No 3 | No 4 | |
control | 97 | 101 | 96 | 103 | 89 | 101 | 93 | 98 | 87 | 101 | 90 | 87 |
5 | 101 | 76 | 89 | 97 | 91 | - | 88 | 94 | 81 | 106 | 107 | 96 |
10 | 91 | 89 | 87 | 91 | 74 | 68 | 76 | 98 | 87 | 77 | 82 | 97 |
25 | 77 | 73 | 67 | 63 | 69 | 51 | 47 | 68 | 76 | 87 | 93 | 63 |
50 | 81 | 70 | 79 | 75 | 94 | 101 | 99 | 87 | 96 | 84 | 68 | 56 |
100 | 78 | 86 | 100 | 78 | 87 | 98 | 82 | 91 | 76 | 85 | 91 | 76 |
150 | 71 | 97 | 64 | 78 | 86 | 97 | 101 | 83 | 75 | 76 | 88 | 84 |
200 | 89 | 84 | 87 | 101 | 95 | 101 | 103 | 87 | 82 | 97 | 88 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiołek, Ł.; Janas, W.; Hordyjewska, A.; Biernasiuk, A. Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties. Appl. Sci. 2024, 14, 3700. https://doi.org/10.3390/app14093700
Popiołek Ł, Janas W, Hordyjewska A, Biernasiuk A. Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties. Applied Sciences. 2024; 14(9):3700. https://doi.org/10.3390/app14093700
Chicago/Turabian StylePopiołek, Łukasz, Wiktoria Janas, Anna Hordyjewska, and Anna Biernasiuk. 2024. "Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties" Applied Sciences 14, no. 9: 3700. https://doi.org/10.3390/app14093700
APA StylePopiołek, Ł., Janas, W., Hordyjewska, A., & Biernasiuk, A. (2024). Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties. Applied Sciences, 14(9), 3700. https://doi.org/10.3390/app14093700