Mask R-CNN-Based Stone Detection and Segmentation for Underground Pipeline Exploration Robots
Abstract
:1. Introduction
- A Mask R-CNN-based system is developed to identify the stones and measure their distances from the robot in the underground pipeline.
- A manually validated and labeled data set is presented for the segmentation work.
- This system offers a precise and fast robotic study of underground pipeline object detection research.
2. Materials and Methods
2.1. Dataset Acquisition
2.2. Dataset Construction and Annotation
2.3. Mask R-CNN
2.4. Training and Loss Function
2.5. Distance Measurment of the Segmented Stones
2.6. Evaluation for the Stone Detection Model
3. Experimental Results and Analysis
3.1. Evaluation of the Stone Detection Model
3.2. Testing of Distance Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawaguchi, Y.; Yoshida, I.; Kurumatani, H.; Kikuta, T.; Yamada, Y. Internal pipe inspection robot. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; Volume 1, pp. 857–862. [Google Scholar] [CrossRef]
- Roh, S.G.; Ryew, S.M.; Yang, J.H.; Choi, H.R. Actively steerable in-pipe inspection robots for underground urban gas pipelines. In Proceedings of the 2001 ICRA, IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Republic of Korea, 21–26 May 2001; Volume 1, pp. 761–766. [Google Scholar] [CrossRef]
- Abdellatif, M.; Mohamed, H.; Hesham, M.; Abdelmoneim, A.; Kamal, A.; Khaled, A. Mechatronics Design of an Autonomous Pipe-Inspection Robot. MATEC Web Conf. 2018, 153, 02002. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, J.; Yang, B.; Chen, A. Design of Pipe-inspection Robot Based on YOLOv3. J. Phys. Conf. Ser. 2022, 2284, 012023. [Google Scholar] [CrossRef]
- Hassan, S.I.; Dang, L.M.; Mehmood, I.; Im, S.; Choi, C.; Kang, J.; Park, Y.-S.; Moon, H. Underground sewer pipe condition assessment based on convolutional neural networks. Autom. Constr. 2019, 106, 102849. [Google Scholar] [CrossRef]
- Qiao, W.; Zhao, Y.; Xu, Y.; Lei, Y.; Wang, Y.; Yu, S.; Li, H. Deep learning-based pixel-level rock fragment recognition during tunnel excavation using instance segmentation model. Tunn. Undergr. Space Technol. 2021, 115, 104072. [Google Scholar] [CrossRef]
- Xue, Z.; Chen, L.; Liu, Z.; Lin, F.; Mao, W. Rock segmentation visual system for assisting driving in TBM construction. Mach. Vis. Appl. 2021, 32, 77. [Google Scholar] [CrossRef]
- Dunlop, H. Automatic Rock Detection and Classification in Natural Scenes. Master’s Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2006. [Google Scholar]
- Bamford, T.; Esmaeili, K.; Schoellig, A.P. A deep learning approach for rock fragmentation analysis. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 2021, 145, 104839. [Google Scholar] [CrossRef]
- Shrivastava, S.; Bhattacharjee, S.; Deb, D. Segmentation of mine overburden dump particles from images using Mask R CNN. Sci. Rep. 2023, 13, 2046. [Google Scholar] [CrossRef] [PubMed]
- Tsung-Shiang, H.; Bao, T.; Hoang, Q.V.; Drebenstetd, C.; Van Hoa, P.; Thang, H.H. Measuring blast fragmentation at Nui Phao open-pit mine, Vietnam using the Mask R-CNN deep learning model. Min. Technol. 2021, 130, 232–243. [Google Scholar] [CrossRef]
- Liu, T.; Li, C.; Liu, Z.; Zhang, K.; Liu, F.; Li, D.; Zhang, Y.; Liu, Z.; Liu, L.; Huang, J. Research on Image Identification Method of Rock Thin Slices in Tight Oil Reservoirs Based on Mask R-CNN. Energies 2022, 15, 5818. [Google Scholar] [CrossRef]
- Yang, Z.; He, B.; Liu, Y.; Wang, D.; Zhu, G. Classification of rock fragments produced by tunnel boring machine using convolutional neural networks. Autom. Constr. 2021, 125, 103612. [Google Scholar] [CrossRef]
- Mustafah, Y.M.; Noor, R.; Hasbi, H.; Azma, A.W. Stereo vision images processing for real-time object distance and size measurements. In Proceedings of the 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 659–663. [Google Scholar] [CrossRef]
- Zivingy, M.; Melhum, A.; Kochery, F.A. Object distance measurement by stereo vision. Int. J. Sci. Appl. Inf. Technol. 2013, 2, 5–8. [Google Scholar]
- Tsung-Shiang, H.; Hsu, T.-S.; Wang, T.-C. An Improvement Stereo Vision Images Processing for Object Distance Measurement. Int. J. Autom. Smart Technol. 2015, 5, 85–90. [Google Scholar] [CrossRef]
- Zhmud, V.A.; Kondratiev, O.; Kuznetsov, A.K.; Trubin, V.G.; Dimitrov, L.V. Application of ultrasonic sensor for measuring distances in robotics. J. Phys. Conf. Ser. 2018, 1015, 032189. [Google Scholar] [CrossRef]
- Frangez, V.; Salido-Monzu, D.; Wieser, A. Assessment and Improvement of Distance Measurement Accuracy for Time-of-Flight Cameras. IEEE Trans. Instrum. Meas. 2022, 71, 1003511. [Google Scholar] [CrossRef]
- Sahmaran, M.; Lachemi, M.; Hossain, K.M.; Ranade, R.; Li, V.C. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Mater. J. 2009, 106, 308. [Google Scholar]
- Dutta, A.; Zisserman, A. The VIA Annotation Software for Images, Audio and Video. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2276–2279. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. arXiv 2015, arXiv:1506.01497v3. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312. [Google Scholar]
Usage | #Images | #Stones |
---|---|---|
Training | 175 | 2185 |
Validation | 75 | 937 |
Testing | 30 | 375 |
Total | 280 | 3497 |
Attribute Name | Value |
---|---|
CPU | AMD Ryzen 7 5800H at 3.2 GHz × 16 |
Memory | 40 GB |
GPU | NVDIA RTX3060 |
OS | Windows 10 |
Attribute Name | Value |
---|---|
CPU | Quad-Core ARM A57 @ 1.43 GHz |
Memory | 4 GB 64-bit LPDDR4 25.6 GB/s |
GPU | Maxwell Core 128EA |
OS | Ubuntu 20.04 |
Trail Images Detail | Measurement Unit: mm | ||||
---|---|---|---|---|---|
Test Images | No. of Objects | Serial No. | Actual Distance | Measured Distance | Absolute Error |
Figure 11a | 4 | 1 | 260.50 | 248.00 | 12.50 |
2 | 355.00 | 339.25 | 15.75 | ||
3 | 389.50 | 382.00 | 7.50 | ||
4 | 437.50 | 433.00 | 4.50 | ||
Figure 11b | 6 | 1 | 270.00 | 264.00 | 6.00 |
2 | 305.00 | 294.00 | 11.00 | ||
3 | 326.00 | 316.25 | 9.75 | ||
4 | 357.00 | 363.00 | 6.00 | ||
5 | 418.00 | 405.75 | 12.25 | ||
6 | 460.00 | 456.75 | 3.25 | ||
Figure 11c | 3 | 1 | 431.00 | 416.25 | 14.75 |
2 | 537.00 | 529.25 | 7.75 | ||
3 | 726.00 | 722.00 | 4.00 | ||
Figure 11d | 3 | 1 | 328.50 | 315.75 | 12.75 |
2 | 447.00 | 430.00 | 17.00 | ||
3 | 635.00 | 622.00 | 13.00 | ||
Figure 11e | 6 | 1 | 262.00 | 248.50 | 13.50 |
2 | 268.50 | 254.75 | 13.75 | ||
3 | 335.00 | 314.25 | 20.75 | ||
4 | 317.00 | 328.75 | 11.75 | ||
5 | 379.00 | 398.75 | 19.75 | ||
6 | 453.00 | 442.75 | 10.25 | ||
Figure 11f | 8 | 1 | 260.50 | 243.75 | 16.75 |
2 | 267.00 | 253.25 | 13.75 | ||
3 | 280.50 | 273.75 | 6.75 | ||
4 | 318.00 | 305.25 | 12.75 | ||
5 | 320.50 | 312.75 | 7.75 | ||
6 | 313.00 | 324.75 | 11.75 | ||
7 | 402.00 | 389.00 | 13.00 | ||
8 | 441.00 | 433.25 | 7.75 | ||
Figure 11g | 4 | 1 | 242.50 | 230.75 | 11.75 |
2 | 318.00 | 310.50 | 7.50 | ||
3 | 357.00 | 342.50 | 14.50 | ||
4 | 410.00 | 393.75 | 16.25 | ||
Figure 11h | 6 | 1 | 278.00 | 265.75 | 12.25 |
2 | 309.00 | 314.75 | 5.75 | ||
3 | 345.00 | 335.50 | 9.50 | ||
4 | 373.50 | 361.25 | 12.25 | ||
5 | 431.00 | 418.50 | 12.50 | ||
6 | 507.00 | 492.75 | 14.25 | ||
Total | 40 | 454.25 | |||
Average absolute error | 11.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, H.; Lee, H.-S. Mask R-CNN-Based Stone Detection and Segmentation for Underground Pipeline Exploration Robots. Appl. Sci. 2024, 14, 3752. https://doi.org/10.3390/app14093752
Kabir H, Lee H-S. Mask R-CNN-Based Stone Detection and Segmentation for Underground Pipeline Exploration Robots. Applied Sciences. 2024; 14(9):3752. https://doi.org/10.3390/app14093752
Chicago/Turabian StyleKabir, Humayun, and Heung-Shik Lee. 2024. "Mask R-CNN-Based Stone Detection and Segmentation for Underground Pipeline Exploration Robots" Applied Sciences 14, no. 9: 3752. https://doi.org/10.3390/app14093752
APA StyleKabir, H., & Lee, H. -S. (2024). Mask R-CNN-Based Stone Detection and Segmentation for Underground Pipeline Exploration Robots. Applied Sciences, 14(9), 3752. https://doi.org/10.3390/app14093752