Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Research Environments
2.2. Data Preprocessing—The Creation of Supervised Data
- Specify the center of the spinal canal and the spinous process in the axial section image of the third lumbar vertebra, thereby creating a reference line for the angle;
- The axial section image is converted to a coronal section image, and the range is set so that the first to the fifth lumbar vertebrae are included in the image;
- Cut out the set area in the plane perpendicular to the created reference line;
- Create a pseudo X-ray image containing three-dimensional information by adding together the images cut out in step 3 to an arbitrary extent;
- Visually adjust the maximum and minimum pixel values of the image to create an image with contrast similar to the actual X-ray image;
- Create and save an image according to the procedure described up to step 5, rotated in 5° increments from −60° to 60° relative to the reference angle.
2.3. Training Dataset
2.4. Evaluation of Created Models
2.4.1. Evaluation of Regression Models
2.4.2. Evaluation of Classification Models
3. Results
3.1. Evaluation of Regression Model
3.2. Evaluation of Classification Model
4. Discussion
4.1. Study Results and Model Accuracy
4.2. Comparison with Other Studies
4.3. Limitations of the Study
4.4. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Chen, M.; Wu, X.; Lin, S.; Tao, C.; Cao, H.; Shao, Z.; Xiao, G. Global, Regional and National Burden of Low Back Pain 1990–2019: A Systematic Analysis of the Global Burden of Disease Study 2019. J. Orthop. Transl. 2022, 32, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.L.; De Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R.; et al. Global, Regional, and National Burden of Low Back Pain, 1990–2020, Its Attributable Risk Factors, and Projections to 2050: A Systematic Analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lai, X.; Li, C.; Yang, Y.; Gu, S.; Hou, W.; Zhai, L.; Zhu, Y. Focus on the Impact of Social Factors and Lifestyle on the Disease Burden of Low Back Pain: Findings from the Global Burden of Disease Study 2019. BMC Musculoskelet. Disord. 2023, 24, 679. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.C.; Shimer, A.L. Lumbosacral Spondylolysis and Spondylolisthesis. Clin. Sports Med. 2021, 40, 471–490. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, S.M.; Ashton, I.K.; Roberts, S.; Darby, A.J.; Kanse, P.; Menage, J.; Evans, H. Innervation of the Spondylolysis “Ligament”. Spine 1994, 19, 912–916. [Google Scholar] [CrossRef]
- Nordstrom, D.; Santavirta, S.; Seitsalo, S.; Hukkanen, M.; Polak, J.M.; Nordsletten, L.; Konttinen, Y.T. Symptomatic Lumbar Spondylolysisneuroimmunologic Studies. Spine 1994, 19, 2752–2758. [Google Scholar] [CrossRef]
- Yamane, T.; Yoshida, T.; Mimatsu, K. Early Diagnosis of Lumbar Spondylolysis by MRI. J. Bone Jt. Surg. Ser. B 1993, 75, 764–768. [Google Scholar] [CrossRef]
- Trinh, G.M.; Shao, H.C.; Hsieh, K.L.C.; Lee, C.Y.; Liu, H.W.; Lai, C.W.; Chou, S.Y.; Tsai, P.I.; Chen, K.J.; Chang, F.C.; et al. Detection of Lumbar Spondylolisthesis from X-Ray Images Using Deep Learning Network. J. Clin. Med. 2022, 11, 5450. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Deyo, R.A.; Jarvik, J.G. Appropriate Use of Lumbar Imaging for Evaluation of Low Back Pain. Radiol. Clin. North Am. 2012, 50, 569–585. [Google Scholar] [CrossRef]
- DeVine, J.G. Commentary: Standardization of Dynamic Lumbar Imaging and Diagnostic Criteria for Discogenic Low Back Pain. Spine J. 2011, 11, 999–1001. [Google Scholar] [CrossRef]
- Kawakami, M.; Hirata, K.; Furuya, S.; Kobayashi, K.; Sugimori, H.; Magota, K.; Katoh, C. Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images. Front. Med. 2020, 7, 616746. [Google Scholar] [CrossRef]
- Asami, Y.; Yoshimura, T.; Manabe, K.; Yamada, T.; Sugimori, H. Development of Detection and Volumetric Methods for the Triceps of the Lower Leg Using Magnetic Resonance Images with Deep Learning. Appl. Sci. 2021, 11, 12006. [Google Scholar] [CrossRef]
- Manabe, K.; Asami, Y.; Yamada, T.; Sugimori, H. Improvement in the Convolutional Neural Network for Computed Tomography Images. Appl. Sci. 2021, 11, 1505. [Google Scholar] [CrossRef]
- Sugimori, H.; Shimizu, K.; Makita, H.; Suzuki, M.; Konno, S. A Comparative Evaluation of Computed Tomography Images for the Classification of Spirometric Severity of the Chronic Obstructive Pulmonary Disease with Deep Learning. Diagnostics 2021, 11, 929. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Sugimori, H.; Fujima, N.; Toyonaga, T.; Kudo, K. Artificial Intelligence for Nuclear Medicine in Oncology. Ann. Nucl. Med. 2022, 36, 123–132. [Google Scholar] [CrossRef]
- Yoshimura, T.; Hasegawa, A.; Kogame, S.; Magota, K.; Kimura, R.; Watanabe, S.; Hirata, K.; Sugimori, H. Medical Radiation Exposure Reduction in PET via Super-Resolution Deep Learning Model. Diagnostics 2022, 12, 872. [Google Scholar] [CrossRef]
- Ichikawa, S.; Itadani, H.; Sugimori, H. Prediction of Body Weight from Chest Radiographs Using Deep Learning with a Convolutional Neural Network. Radiol. Phys. Technol. 2023, 16, 127–134. [Google Scholar] [CrossRef]
- Galbusera, F.; Casaroli, G.; Bassani, T. Artificial Intelligence and Machine Learning in Spine Research. JOR Spine 2019, 2, e1044. [Google Scholar] [CrossRef] [PubMed]
- Khadka, A.; Remagnino, P.; Argyriou, V. Synthetic Crowd and Pedestrian Generator for Deep Learning Problems. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, Barcelona, Spain, 4–8 May 2020; pp. 4052–4056. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, N.; Tong, F.; Chen, H. Automatic Measurement Algorithm of Scoliosis Cobb Angle Based on Deep Learning. J. Phys. Conf. Ser. 2019, 1187, 042100. [Google Scholar] [CrossRef]
- Jaremko, J.L.; Poncet, P.; Ronsky, J.; Harder, J.; Dansereau, J.; Labelle, H.; Zernicke, R.F. Genetic Algorithm-Neural Network Estimation of Cobb Angle from Torso Asymmetry in Scoliosis. J. Biomech. Eng. 2002, 124, 496–503. [Google Scholar] [CrossRef]
- Caesarendra, W.; Rahmaniar, W.; Mathew, J.; Thien, A. AutoSpine-Net: Spine Detection Using Convolutional Neural Networks for Cobb Angle Classification in Adolescent Idiopathic Scoliosis. Lect. Notes Electr. Eng. 2022, 898, 547–556. [Google Scholar] [CrossRef]
- Wu, C.; Meng, G.; Lian, J.; Xu, J.; Gao, M.; Huang, C.; Zhang, S.; Zhang, Y.; Yu, Y.; Wang, H.; et al. A Multi-Stage Ensemble Network System to Diagnose Adolescent Idiopathic Scoliosis. Eur. Radiol. 2022, 32, 5880–5889. [Google Scholar] [CrossRef]
- Kokabu, T.; Kanai, S.; Kawakami, N.; Uno, K.; Kotani, T.; Suzuki, T.; Tachi, H.; Abe, Y.; Iwasaki, N.; Sudo, H. An Algorithm for Using Deep Learning Convolutional Neural Networks with Three Dimensional Depth Sensor Imaging in Scoliosis Detection. Spine J. 2021, 21, 980–987. [Google Scholar] [CrossRef]
- Usui, K.; Yoshimura, T.; Tang, M.; Sugimori, H. Age Estimation from Brain Magnetic Resonance Images Using Deep Learning Techniques in Extensive Age Range. Appl. Sci. 2023, 13, 1753. [Google Scholar] [CrossRef]
- Inomata, S.; Yoshimura, T.; Tang, M.; Ichikawa, S.; Sugimori, H. Estimation of Left and Right Ventricular Ejection Fractions from Cine-MRI Using 3D-CNN. Sensors 2023, 23, 6580. [Google Scholar] [CrossRef]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Burri, S.R.; Ahuja, S.; Kumar, A.; Baliyan, A. Exploring the Effectiveness of Optimized Convolutional Neural Network in Transfer Learning for Image Classification: A Practical Approach. In Proceedings of the 2023 International Conference on Advancement in Computation and Computer Technologies, InCACCT 2023, Gharuan, India, 5–6 May 2023; pp. 598–602. [Google Scholar]
- Benavente, D.; Gatica, G.; González-Feliu, J. Balanced Medical Image Classification with Transfer Learning and Convolutional Neural Networks. Axioms 2022, 11, 115. [Google Scholar] [CrossRef]
- Chen, C.; Liu, B.; Zhou, K.; He, W.; Yan, F.; Wang, Z.; Xiao, R. CSR-Net: Cross-Scale Residual Network for Multi-Objective Scaphoid Fracture Segmentation. Comput. Biol. Med. 2021, 137, 104776. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Xu, C.; Wang, Z.; Shu, S.; Sun, Z.; Tang, W.; Wang, Z.L. Sensing of Joint and Spinal Bending or Stretching via a Retractable and Wearable Badge Reel. Nat. Commun. 2021, 12, 2950. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Qi, S.; Zhou, K.; Lu, T.; Ning, H.; Xiao, R. Pairwise Attention-Enhanced Adversarial Model for Automatic Bone Segmentation in CT Images. Phys. Med. Biol. 2023, 68, 035019. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Gautier, M.; Mahe, L.; Soriano, J.E.; Rowald, A.; Bichat, A.; Cho, N.; Anderson, M.A.; James, N.D.; Gandar, J.; et al. Neuroprosthetic Baroreflex Controls Haemodynamics after Spinal Cord Injury. Nature 2021, 590, 308–314. [Google Scholar] [CrossRef]
- Mei, X.; Liu, Z.; Robson, P.M.; Marinelli, B.; Huang, M.; Doshi, A.; Jacobi, A.; Cao, C.; Link, K.E.; Yang, T.; et al. RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning. Radiol. Artif. Intell. 2022, 4, e210315. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Heidari, A.A.; Kuang, F.; Khalil, A.; Mafarja, M.; Zhang, S.; Chen, H.; Pan, Z. Enhanced Gaussian Bare-Bones Grasshopper Optimization: Mitigating the Performance Concerns for Feature Selection. Expert Syst. Appl. 2023, 212, 118642. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, H.; Heidari, A.A.; Gui, W.; Ye, X.; Chen, Y.; Chen, H.; Pan, Z. MFeature: Towards High Performance Evolutionary Tools for Feature Selection. Expert Syst. Appl. 2021, 186, 115655. [Google Scholar] [CrossRef]
Environment | Contents |
---|---|
Software | MATLAB 2022a (Mathworks) |
OS | Windows 10 |
CPU | Intel Core i9-10980XE 3.5 GHz |
RAM | DDR4 2666 Mhz 64 GB |
GPU | NVIDIA RTX P5000 16 GB × 4 |
Parameters | |
---|---|
architecture | ResNet50 |
mini batch size | 128 |
number of epochs | 10 |
optimizer | SGDM a |
momentum | 0.9 |
learn rate drop factor | 0.1 |
initial learning rate | 0.0001 |
L2 regularization | 0.0001 |
MSE a (degree2) | RMSE b (degree) | Correlation Coefficient (r) | |
---|---|---|---|
fold 1 | 11.146 | 3.339 | 0.985 |
fold 2 | 20.035 | 4.476 | 0.970 |
fold 3 | 11.175 | 3.343 | 0.983 |
fold 4 | 12.982 | 3.603 | 0.980 |
fold 5 | 18.830 | 4.339 | 0.985 |
mean | 14.833 | 3.820 | 0.981 |
Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Mean | |
---|---|---|---|---|---|---|
0° | 0.978 | 0.971 | 0.972 | 0.975 | 0.984 | 0.976 |
5° | 0.968 | 0.965 | 0.965 | 0.964 | 0.969 | 0.966 |
10° | 0.956 | 0.940 | 0.964 | 0.955 | 0.959 | 0.955 |
15° | 0.946 | 0.935 | 0.961 | 0.959 | 0.955 | 0.951 |
20° | 0.940 | 0.933 | 0.961 | 0.951 | 0.952 | 0.947 |
25° | 0.932 | 0.945 | 0.959 | 0.950 | 0.946 | 0.946 |
30° | 0.943 | 0.931 | 0.957 | 0.943 | 0.944 | 0.944 |
35° | 0.942 | 0.936 | 0.955 | 0.942 | 0.939 | 0.943 |
40° | 0.954 | 0.939 | 0.956 | 0.939 | 0.941 | 0.946 |
45° | 0.958 | 0.934 | 0.954 | 0.938 | 0.940 | 0.945 |
50° | 0.949 | 0.928 | 0.945 | 0.939 | 0.945 | 0.941 |
55° | 0.962 | 0.938 | 0.947 | 0.953 | 0.939 | 0.948 |
60° | 0.983 | 0.974 | 0.978 | 0.984 | 0.982 | 0.980 |
mean | 0.955 | 0.944 | 0.960 | 0.953 | 0.953 | 0.953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriya, R.; Yoshimura, T.; Tang, M.; Ichikawa, S.; Sugimori, H. Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography. Appl. Sci. 2024, 14, 3794. https://doi.org/10.3390/app14093794
Moriya R, Yoshimura T, Tang M, Ichikawa S, Sugimori H. Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography. Applied Sciences. 2024; 14(9):3794. https://doi.org/10.3390/app14093794
Chicago/Turabian StyleMoriya, Ryuma, Takaaki Yoshimura, Minghui Tang, Shota Ichikawa, and Hiroyuki Sugimori. 2024. "Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography" Applied Sciences 14, no. 9: 3794. https://doi.org/10.3390/app14093794
APA StyleMoriya, R., Yoshimura, T., Tang, M., Ichikawa, S., & Sugimori, H. (2024). Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography. Applied Sciences, 14(9), 3794. https://doi.org/10.3390/app14093794