Monitoring and Leak Diagnostics of Sulfur Hexafluoride and Decomposition Gases from Power Equipment for the Reliability and Safety of Power Grid Operation
Abstract
:1. Introduction
2. Decomposition Mechanism of SF6 and Influencing Factors
3. Monitoring and Detection Technology of SF6 and Its Decomposition Components
3.1. Nondispersive Infrared Absorption Spectroscopy (NDIR)
3.2. Photoacoustic Spectroscopy (PAS)
3.2.1. Microphone Photoacoustic Spectroscopy
3.2.2. Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) Method
3.2.3. Cantilever-Enhanced Photoacoustic Spectroscopy (CEPAS) Method
3.3. Fourier Transform Infrared Spectroscopy (FTIR) Method
3.4. Tunable Semiconductor Laser Absorption Spectroscopy (TDLAS) Method
3.5. Raman Spectroscopy (RS)
3.6. Gas Chromatography (GC)
3.7. Ion Migration Spectrometry (IMS) Method
3.8. Miniaturized Monitoring Method
4. Reliable and Highly Sensitive Gas-Sensitive Materials for Intelligent Monitoring
4.1. Carbon Nanotube (CNT) Material
4.2. 2D (Two-Dimensional) Material Sensor Material
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karweik, D.H. Optoacoustic Spectroscopy and Detection (Pao, Joh-Han). J. Chem. Educ. 1979, 56, A184. [Google Scholar] [CrossRef]
- Dervos, C.T.; Vassiliou, P. Sulfur Hexafluoride (SF6): Global Environmental Effects and Toxic Byproduct Formation. J. Air Waste Manag. Assoc. 2000, 50, 137–141. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, J.; Zhang, X.; Yao, Q.; Miao, Y. SF6 Partial Overthermal Decomposition Characteristics of Thermal Fault in Organic Insulating Materials. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 829–837. [Google Scholar] [CrossRef]
- Zeng, F.; Wu, S.; Lei, Z.; Li, C.; Tang, J.; Yao, Q.; Miao, Y. SF6 Fault Decomposition Feature Component Extraction and Triangle Fault Diagnosis Method. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 581–589. [Google Scholar] [CrossRef]
- Cao, Z.; Tang, J.; Zeng, F.; Yao, Q.; Miao, Y. SF6 Positive DC Partial Discharge Decomposition Components under Four Typical Insulation Defects. IET Gener. Transm. Distrib. 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Ji, S.; Zhong, L.; Wang, Y.; Li, J.; Cui, Y.; Wang, W. SF6 Decomposition of Typical CT Defect Models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2864–2870. [Google Scholar] [CrossRef]
- Mahdi, A.S.; Abdul-Malek, Z.; Arshad, R.N. SF6 Decomposed Component Analysis for Partial Discharge Diagnosis in GIS: A Review. IEEE Access 2022, 10, 27270–27288. [Google Scholar] [CrossRef]
- Ren, M.; Wang, S.; Zhou, J.; Zhuang, T.; Yang, S. Multispectral Detection of Partial Discharge in SF6 Gas with Silicon Photomultiplier-Based Sensor Array. Sens. Actuators A Phys. 2018, 283, 113–122. [Google Scholar] [CrossRef]
- Sun, B.; Zifarelli, A.; Wu, H.; Dello Russo, S.; Li, S.; Patimisco, P.; Dong, L.; Spagnolo, V. Mid-Infrared Quartz-Enhanced Photoacoustic Sensor for Ppb-Level CO Detection in a SF6 Gas Matrix Exploiting a T-Grooved Quartz Tuning Fork. Anal. Chem. 2020, 92, 13922–13929. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Wang, J.; Tang, J.; Shi, Y.; Wan, F. Multigas Analysis by Cavity-Enhanced Raman Spectroscopy for Power Transformer Diagnosis. Anal. Chem. 2020, 92, 5969–5977. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Zhang, X.; Meng, Q.; Zhou, J. Partial Discharge Recognition through an Analysis of SF6 Decomposition Products Part 1: Decomposition Characteristics of SF6 under Four Different Partial Discharges. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 29–36. [Google Scholar] [CrossRef]
- Wu, S.; Zeng, F.; Tang, J.; Yao, Q.; Miao, Y. Triangle Fault Diagnosis Method for SF6 Gas-Insulated Equipment. IEEE Trans. Power Deliv. 2019, 34, 1470–1477. [Google Scholar] [CrossRef]
- Ding, W.; Li, G.; Ren, X.; Yan, X.; Li, F.; Zhou, W.; Wang, F. A Comparison of SF6 Decomposition Characteristics under Corona with Point-to-Plane Electrode Defect and Spark with Floating Potential Defect. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3278–3289. [Google Scholar] [CrossRef]
- Tang, J.; Pan, J.; Yao, Q.; Miao, Y.; Huang, X.; Zeng, F. Feature Extraction of SF6 Thermal Decomposition Characteristics to Diagnose Overheating Fault. IET Sci. Meas. Technol. 2015, 9, 751–757. [Google Scholar] [CrossRef]
- Zeng, F.; Lei, Z.; Yang, X.; Tang, J.; Yao, Q.; Miao, Y. Evaluating DC Partial Discharge With SF 6 Decomposition Characteristics. IEEE Trans. Power Deliv. 2019, 34, 1383–1392. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Zhang, L.; Ma, W.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Highly Sensitive Photoacoustic Multicomponent Gas Sensor for SF6 Decomposition Online Monitoring. Opt. Express 2019, 27, A224. [Google Scholar] [CrossRef]
- Skelly, D. Photo-Acoustic Spectroscopy for Dissolved Gas Analysis: Benefits and Experience. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 29–43. [Google Scholar]
- Zeng, F.; Tang, J.; Zhang, X.; Pan, J.; Yao, Q.; Hou, X. Influence Regularity of Trace H2O on SF6 Decomposition Characteristics under Partial Discharge of Needle-Plate Electrode. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 287–295. [Google Scholar] [CrossRef]
- Wan, F.; Chen, W.; Peng, X.; Shi, J. Study on the Gas Pressure Characteristics of Photoacoustic Spectroscopy Detection for Dissolved Gases in Transformer Oil. In Proceedings of the 2012 International Conference on High Voltage Engineering and Application, Shanghai, China, 17–20 September 2012; pp. 286–289. [Google Scholar]
- Yao, J.; Xiong, Z.; Li, S.; Yu, Z.; Liu, Y. TSFF-Net: A Novel Lightweight Network for Video Real-Time Detection of SF6 Gas Leaks. Expert. Syst. Appl. 2024, 247, 123219. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Yao, Q. Research and Development of NDIR Sensor and Its Application In On-Line Detection of CF4 Gas. J. Phys. Conf. Ser. 2020, 1634, 012109. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Gao, M.; Zhang, L.; Zhang, X.; Liu, L.; Shao, X.; Tittel, F.K. Compact QEPAS Humidity Sensor in SF6 Buffer Gas for High-Voltage Gas Power Systems. Photoacoustics 2022, 25, 100319. [Google Scholar] [CrossRef]
- Jun, C.; Chao, B.; Xuan, C.; Jiagui, T.; Qiang, G.; Zhengdong, Z.; Ruguang, C.; Tingyue, T. The Detection of CO Gas Based on Non-Resonant Photoacoustic Spectroscopy. In Proceedings of the 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, China, 18–20 December 2021; pp. 91–94. [Google Scholar]
- Li, A.; Chang, J.; Liu, Y.; Wang, Q.; Wang, Z. Research on High Sensitivity of Resonant Enhancement Laser Intracavity Photoacoustic Spectroscopy Technology. Optik 2018, 156, 672–676. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Yu, P.; Liu, Z. Optical Gas Sensing of Sub-ppm SO2F2 and SOF2 from SF6 Decomposition Based on Photoacoustic Spectroscopy. IET Optoelectron. 2022, 16, 277–282. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Highly Sensitive SO2 Photoacoustic Sensor for SF6 Decomposition Detection Using a Compact MW-Level Diode-Pumped Solid-State Laser Emitting at 303 Nm. Opt. Express 2017, 25, 32581. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Ppb-Level H2S Detection for SF6 Decomposition Based on a Fiber-Amplified Telecommunication Diode Laser and a Background-Gas-Induced High-Q Photoacoustic Cell. Appl. Phys. Lett. 2017, 111, 031109. [Google Scholar] [CrossRef]
- Qiao, Y.; Tang, L.; Gao, Y.; Han, F.; Liu, C.; Li, L.; Shan, C. Sensitivity Enhanced NIR Photoacoustic CO Detection with SF6 Promoting Vibrational to Translational Relaxation Process. Photoacoustics 2022, 25, 100334. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Mid-Infrared Fiber-Coupled QCL-QEPAS Sensor. Appl. Phys. B 2013, 112, 25–33. [Google Scholar] [CrossRef]
- Arellano, G.G.; de Aquino Carvalho, J.C.; Mouhanna, H.; Butery, E.; Billeton, T.; Du-Burck, F.; Darquié, B.; Maurin, I.; Laliotis, A. Probing Molecules in Gas Cells of Subwavelength Thickness with High Frequency Resolution. Nat. Commun. 2024, 15, 1862. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Wu, H.; Yin, X.; Xiao, L.; Jia, S.; Curl, R.F.; Tittel, F.K. Application of Acoustic Micro-Resonators in Quartz-Enhanced Photoacoustic Spectroscopy for Trace Gas Analysis. Chem. Phys. Lett. 2018, 691, 462–472. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, M.; Fu, L.; Chen, C.; You, R.; Ren, W. Rapid Field Measurement of Ventilation Rate Using a Quartz-Enhanced Photoacoustic SF6 Gas Sensor. Meas. Sci. Technol. 2020, 31, 085105. [Google Scholar] [CrossRef]
- Fu, L.; Yang, M.; Niu, J.; Ren, W.; You, R. Transient Tracer Gas Measurements: Development and Evaluation of a Fast-response SF6 Measuring System Based on Quartz-enhanced Photoacoustic Spectroscopy. Indoor Air 2022, 32, e12952. [Google Scholar] [CrossRef]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-Parts-per-Trillion Level Sensitivity in Trace Gas Detection by Cantilever-Enhanced Photo-Acoustic Spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Liu, X.; Wang, G.; Wang, Y.; Feng, C.; Cui, R.; Gong, Z.; Dong, L. Cantilever-Enhanced Dual-Comb Photoacoustic Spectroscopy. Photoacoustics 2024, 38, 100605. [Google Scholar] [CrossRef]
- Karhu, J.; Philip, H.; Baranov, A.; Teissier, R.; Hieta, T. Sub-Ppb Detection of Benzene Using Cantilever-Enhanced Photoacoustic Spectroscopy with a Long-Wavelength Infrared Quantum Cascade Laser. Opt. Lett. 2020, 45, 5962. [Google Scholar] [CrossRef]
- Chen, K.; Yu, Q.; Gong, Z.; Guo, M.; Qu, C. Ultra-High Sensitive Fiber-Optic Fabry-Perot Cantilever Enhanced Resonant Photoacoustic Spectroscopy. Sens. Actuators B Chem. 2018, 268, 205–209. [Google Scholar] [CrossRef]
- Peltola, J.; Vainio, M.; Hieta, T.; Uotila, J.; Sinisalo, S.; Metsälä, M.; Siltanen, M.; Halonen, L. High Sensitivity Trace Gas Detection by Cantilever-Enhanced Photoacoustic Spectroscopy Using a Mid-Infrared Continuous-Wave Optical Parametric Oscillator. Opt. Express 2013, 21, 10240. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, H.; Wang, Z.; Ma, F.; Li, C.; Guo, M.; Chen, K. Cantilever Enhanced Fiber-Optic Photoacoustic Microprobe for Diffusion Detection of Sulfur Dioxide. Sens. Actuators B Chem. 2024, 405, 135340. [Google Scholar] [CrossRef]
- Cheng, H.; Tang, J.; Zhang, X.; Li, Y.; Hu, J.; Zhang, Y.; Mao, S.; Xiao, S. Simultaneous Detection of C₂H₂ and CO Based on Cantilever-Enhanced Photoacoustic Spectroscopy. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Yang, T.; Fan, S.; Cheng, H.; Xu, G.; Zhang, Y.; Zhou, H. Detection of Trace Carbon Monoxide Based on Cantilever Enhanced Photoacoustic Spectroscopy at 2.33 Μm. Infrared Phys. Technol. 2022, 126, 104364. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, X.; Bian, C.; Cheng, J.; Chen, Z.; Zhang, Y.; Tang, J.; Xiao, S. Photoacoustic Spectroscopy: Trace CO Detection by Using 10 MW near-Infrared Laser and Cantilever Beam. AIP Adv. 2020, 10, 105122. [Google Scholar] [CrossRef]
- Tapia-Mercado, J.; Khomenko, A.V.; Cortés-Martínez, R.; García-Zárate, M.A. High Accurate Fiber Sensor with Two-LED Light Source. Opt. Commun. 2000, 177, 219–223. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Ren, J.; Li, J.; Li, X. Fourier Transform Infrared Spectroscopy Quantitative Analysis of SF6 Partial Discharge Decomposition Components. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 884–889. [Google Scholar] [CrossRef]
- Shi, G.; Gao, J.; Zhang, X.; Qin, W.; Zhang, Y. Quantitative Detection of Multicomponent SF6 Decomposition Products Based on Fourier Transform Infrared Spectroscopy Combined with SCARS-DNN. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 311, 123989. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, X.; Li, X.; Yue, Y. Study of HF Gas Detection in Electrical Equipment by TDLAS Technology. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 103–107. [Google Scholar]
- Zhang, X.; Yan, J.; Zhang, Y.; Cheng, L.; Bian, C.; Chen, X. Infrared Spectrum Analysis and Quantitative Detection of SF6 Characteristic Decomposition Components SO2F2 and SOF2. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1316–1323. [Google Scholar] [CrossRef]
- Lorenz, B.; Rösch, P.; Popp, J. Isolation Matters—Processing Blood for Raman Microspectroscopic Identification of Bacteria. Anal. Bioanal. Chem. 2019, 411, 5445–5454. [Google Scholar] [CrossRef] [PubMed]
- Lyon, L.A.; Keating, C.D.; Fox, A.P.; Baker, B.E.; He, L.; Nicewarner, S.R.; Mulvaney, S.P.; Natan, M.J. Raman Spectroscopy. Anal. Chem. 1998, 70, 341–362. [Google Scholar] [CrossRef]
- Hanf, S.; Keiner, R.; Yan, D.; Popp, J.; Frosch, T. Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis. Anal. Chem. 2014, 86, 5278–5285. [Google Scholar] [CrossRef]
- Knebl, A.; Yan, D.; Popp, J.; Frosch, T. Fiber Enhanced Raman Gas Spectroscopy. TrAC Trends Anal. Chem. 2018, 103, 230–238. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Wan, F.; Wang, J.; Hu, J. A Review of Cavity-Enhanced Raman Spectroscopy as a Gas Sensing Method. Appl. Spectrosc. Rev. 2020, 55, 393–417. [Google Scholar] [CrossRef]
- Vanbrunt, R.J. Production Rates for Oxyfluorides SOF2, SO2F2, and SOF4 in SF6 Corona Discharges. J. Res. Natl. Bur. Stand. (1934) 1985, 90, 229. [Google Scholar] [CrossRef]
- Huang, W.; Wang, W.; Chen, C.; Li, Y.; Wang, Z.; Li, Q.; Li, M.; Hou, K. Real-Time Monitoring Traces of SF6 in near-Source Ambient Air by Ion Mobility Spectrometry. Int. J. Environ. Anal. Chem. 2019, 99, 868–877. [Google Scholar] [CrossRef]
- Khan, Q.; Refaat, S.S.; Abu-Rub, H.; Toliyat, H.A. Partial Discharge Detection and Diagnosis in Gas Insulated Switchgear: State of the Art. IEEE Electr. Insul. Mag. 2019, 35, 16–33. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, W.; Yu, J.; Su, Q.; Zheng, X.; Zhou, Y.; Li, L.; Yao, W.; Wang, B.; Hu, H. Insulation Condition Monitoring of Epoxy Spacers in GIS Using a Decomposed Gas CS2. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2152–2157. [Google Scholar] [CrossRef]
- Si, W.; Li, J.; Li, D.; Yang, J.; Li, Y. Investigation of a Comprehensive Identification Method Used in Acoustic Detection System for GIS. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 721–732. [Google Scholar] [CrossRef]
- Umesh, S.; Balachandra, T.C.; Usha, A. A Novel MEMS Sensor for Online Health Monitoring of Gas Insulated Switchgear Systems. In Proceedings of the 2015 International Conference on Power and Advanced Control Engineering (ICPACE), Bengaluru, India, 12–14 August 2015; pp. 304–307. [Google Scholar]
- Gutiérrez, Y.; Giangregorio, M.M.; Palumbo, F.; González, F.; Brown, A.S.; Moreno, F.; Losurdo, M. Sustainable and Tunable Mg/MgO Plasmon-Catalytic Platform for the Grand Challenge of SF6 Environmental Remediation. Nano Lett. 2020, 20, 3352–3360. [Google Scholar] [CrossRef]
- Hou, Z.; Cai, B.; Liu, H.; Xu, D. Ar, O2, CHF3, and SF6 Plasma Treatments of Screen-printed Carbon Nanotube Films for Electrode Applications. Carbon 2008, 46, 405–413. [Google Scholar] [CrossRef]
- Komiyama, M.; Mori, T.; Ariga, K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bull. Chem. Soc. Jpn. 2018, 91, 1075–1111. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors. Science (1979) 2000, 287, 622–625. [Google Scholar] [CrossRef]
- Vashist, S.K.; Zheng, D.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.-S. Advances in Carbon Nanotube Based Electrochemical Sensors for Bioanalytical Applications. Biotechnol. Adv. 2011, 29, 169–188. [Google Scholar] [CrossRef]
- Andrews, R.; Jacques, D.; Qian, D.; Rantell, T.D. Multiwall Carbon Nanotubes: Synthesis and Application. Acc. Chem. Res. 2002, 35, 1008–1017. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, Y.; Xiao, H.; Zhang, Y. Analysis of Adsorption Properties of Typical Partial Discharge Gases on Ni-SWCNTs Using Density Functional Theory. Appl. Surf. Sci. 2016, 379, 47–54. [Google Scholar] [CrossRef]
- YAO, Q.; MIAO, Y. Adsorption Behavior of N3-CNT towards SF6 Decomposed Species: A DFT Study. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 4830–4834. [Google Scholar]
- Gui, Y.; Zhang, X.; Lv, P.; Wang, S.; Tang, C.; Zhou, Q. Ni-CNT Chemical Sensor for SF6 Decomposition Components Detection: A Combined Experimental and Theoretical Study. Sensors 2018, 18, 3493. [Google Scholar] [CrossRef]
- Vargas-Bernal, R. Electrical Properties of Two-Dimensional Materials Used in Gas Sensors. Sensors 2019, 19, 1295. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S. Gas Sensing in 2D Materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Cen, C.; Zhang, Y.; Chen, X.; Yang, H.; Yi, Z.; Yao, W.; Tang, Y.; Yi, Y.; Wang, J.; Wu, P. A Dual-Band Metamaterial Absorber for Graphene Surface Plasmon Resonance at Terahertz Frequency. Phys. E Low. Dimens. Syst. Nanostruct 2020, 117, 113840. [Google Scholar] [CrossRef]
- Li, J.; Pang, L.; Cai, F.; Yuan, X.; Kong, F. Adsorption Properties of Pd3-Modified Double-Vacancy Defect Graphene toward SF6 Decomposition Products. Sensors 2020, 20, 4188. [Google Scholar] [CrossRef]
- Singh, G.; Choudhary, A.; Haranath, D.; Joshi, A.G.; Singh, N.; Singh, S.; Pasricha, R. ZnO Decorated Luminescent Graphene as a Potential Gas Sensor at Room Temperature. Carbon 2012, 50, 385–394. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, G. Graphene-Based Gas Sensors. J. Mater. Chem. A Mater. 2013, 1, 10078. [Google Scholar] [CrossRef]
- Li, J.; Pang, L.; He, K.; Zhang, L. Theoretical Study of the Gas Sensing Mechanism of N3&Ni Doped Double Vacancies Defect Graphene Upon SF6 Decompositions. IEEE Access 2019, 7, 145567–145573. [Google Scholar]
- Ma, S.; Li, D.; Rao, X.; Xia, X.; Su, Y.; Lu, Y. Pd-Doped h-BN Monolayer: A Promising Gas Scavenger for SF6 Insulation Devices. Adsorption 2020, 26, 619–626. [Google Scholar] [CrossRef]
- Wang, G.; Zheng, K.; Huang, Y.; Yu, J.; Wu, H.; Chen, X.; Tao, L.-Q. An Investigation of the Positive Effects of Doping an Al Atom on the Adsorption of CO2 on BN Nanosheets: A DFT Study. Phys. Chem. Chem. Phys. 2020, 22, 9368–9374. [Google Scholar] [CrossRef]
- Wang, H.; Taychatanapat, T.; Hsu, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Palacios, T. BN/Graphene/BN Transistors for RF Applications. IEEE Electron. Device Lett. 2011, 32, 1209–1211. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Heydari, S.; Dinparast, L. A Comparative DFT Study about Surface Reactivity and Catalytic Activity of Pd- and Ni-Doped BN Nanosheets: NO Reduction by CO Molecule. Struct. Chem. 2019, 30, 1647–1657. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Jiang, C.; Yao, Y.; Wang, D.; Zhang, Y. Room-Temperature Highly Sensitive CO Gas Sensor Based on Ag-Loaded Zinc Oxide/Molybdenum Disulfide Ternary Nanocomposite and Its Sensing Properties. Sens. Actuators B Chem. 2017, 253, 1120–1128. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, G.; Zhang, X.; Tang, J. Rh-Doped MoSe2 as a Toxic Gas Scavenger: A First-Principles Study. Nanoscale Adv. 2019, 1, 772–780. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, J.; Qiu, Y.; Zhu, J.; Zhang, Y.; Hu, G. A DFT Study of Transition Metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-Embedded Monolayer MoS2 for Gas Adsorption. Comput. Mater. Sci. 2017, 138, 255–266. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Tao, L.-Q.; Jiang, T.; Sun, H.; Li, J. Rh-Doped h-BN Monolayer as a High Sensitivity SF6 Decomposed Gases Sensor: A DFT Study. Appl. Surf. Sci. 2021, 536, 147965. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, Q.; Wang, C.; Wei, Z.; Xu, L.; Gui, Y. Electrospun ZnO–SnO2 Composite Nanofibers and Enhanced Sensing Properties to SF6 Decomposition Byproduct H2S. Front. Chem. 2018, 6, 540. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q.; Zhang, Q.; Hong, C.; Xu, L.; Jin, L.; Chen, W. Synthesis, Characterization and Enhanced Sensing Properties of a NiO/ZnO p–n Junctions Sensor for the SF6 Decomposition Byproducts SO2, SO2F2, and SOF2. Sensors 2017, 17, 913. [Google Scholar] [CrossRef]
- Yang, A.; Li, W.; Chu, J.; Wang, D.; Yuan, H.; Zhu, J.; Wang, X.; Rong, M. Enhanced Sensing of Sulfur Hexafluoride Decomposition Components Based on Noble-Metal-Functionalized Cerium Oxide. Mater. Des. 2020, 187, 108391. [Google Scholar] [CrossRef]
- Burke, M.S.; Kast, M.G.; Trotochaud, L.; Smith, A.M.; Boettcher, S.W. Cobalt–Iron (Oxy)Hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648. [Google Scholar] [CrossRef]
- Li, F.; Du, J.; Li, X.; Shen, J.; Wang, Y.; Zhu, Y.; Sun, L. Integration of FeOOH and Zeolitic Imidazolate Framework-Derived Nanoporous Carbon as an Efficient Electrocatalyst for Water Oxidation. Adv. Energy Mater. 2018, 8, 1702598. [Google Scholar] [CrossRef]
- Haq, M.U.; Din, S.U.; Baohui, D.; Khan, S.; Zhu, L. Low-Temperature Detection of Sulfur-Hexafluoride Decomposition Products Using Octahedral Co3O4 -Modified NiSnO3 Nanofibers. ACS Appl. Mater. Interfaces 2022, 14, 9292–9306. [Google Scholar] [CrossRef]
- Kudielka, A.; Bette, S.; Dinnebier, R.E.; Abeykoon, M.; Pietzonka, C.; Harbrecht, B. Variability of Composition and Structural Disorder of Nanocrystalline CoOOH Materials. J. Mater. Chem. C Mater. 2017, 5, 2899–2909. [Google Scholar] [CrossRef]
- Hu, W.K.; Gao, X.P.; Geng, M.M.; Gong, Z.X.; Noréus, D. Synthesis of CoOOH Nanorods and Application as Coating Materials of Nickel Hydroxide for High Temperature Ni−MH Cells. J. Phys. Chem. B 2005, 109, 5392–5394. [Google Scholar] [CrossRef] [PubMed]
- Opoku, F.; Govender, P.P. SF6 Decomposed Gas Sensing Performance of van Der Waals Layered Cobalt Oxyhydroxide: Insights from a Computational Study. J. Mol. Model. 2021, 27, 158. [Google Scholar] [CrossRef] [PubMed]
- Liu, M. Adsorption Behavior of Ni-Doped ZnO Monolayer upon SF6 Decomposed Components and Effect of the Applied Electric Field. ACS Omega 2020, 5, 24118–24124. [Google Scholar] [CrossRef]
- Cui, H.; Zheng, K.; Tao, L.; Yu, J.; Zhu, X.; Li, X.; Chen, X. Monolayer Tellurene-Based Gas Sensor to Detect SF6 Decompositions: A First-Principles Study. IEEE Electron. Device Lett. 2019, 40, 1522–1525. [Google Scholar] [CrossRef]
- Cui, H.; Liu, T.; Zhang, Y.; Zhang, X. Ru-InN Monolayer as a Gas Scavenger to Guard the Operation Status of SF6 Insulation Devices: A First-Principles Theory. IEEE Sens. J. 2019, 19, 5249–5255. [Google Scholar] [CrossRef]
- Yang, A.-J.; Wang, D.-W.; Wang, X.-H.; Chu, J.-F.; Lv, P.-L.; Liu, Y.; Rong, M.-Z. Phosphorene: A Promising Candidate for Highly Sensitive and Selective SF6 Decomposition Gas Sensors. IEEE Electron. Device Lett. 2017, 38, 963–966. [Google Scholar] [CrossRef]
- Qin, X.; Luo, C.; Li, Y.; Cui, H. InP3 Monolayer as a Promising 2D Sensing Material in SF6 Insulation Devices. ACS Omega 2021, 6, 29752–29758. [Google Scholar] [CrossRef]
- Guo, H.; Zheng, K.; Cui, H.; Zhang, F.; Yu, J.; Tao, L.-Q.; Li, X.; Chen, X. High Sensitivity Gas Sensor to Detect SF6 Decomposition Components Based on Monolayer Antimonide Phosphorus. Chem. Phys. Lett. 2020, 756, 137868. [Google Scholar] [CrossRef]
- Wang, X.-H.; Wang, D.-W.; Liu, Z.; Lan, T.-S.; Yang, A.-J.; Pan, J.-B.; Chu, J.-F.; Yuan, H.; Rong, M.-Z. Antimonene: A Promising Candidate for SF₆ Decomposition Gas Sensors With High Sensitivity and High Stability. IEEE Electron. Device Lett. 2020, 41, 1408–1411. [Google Scholar] [CrossRef]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Qiao, J.; Pan, Y.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-Layer Tellurium: One-Dimensional-like Layered Elementary Semiconductor with Striking Physical Properties. Sci. Bull. 2018, 63, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, L.; Wu, X.; Hu, W. Experimental Sensing and Density Functional Theory Study of H2S and SOF2 Adsorption on Au-Modified Graphene. Adv. Sci. 2015, 2, 1500101. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.-H.; et al. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental Study. Phys. Rev. Lett. 2017, 119, 106101. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qiu, G.; Wang, Y.; Wang, R.; Ye, P. Tellurene: Its Physical Properties, Scalable Nanomanufacturing, and Device Applications. Chem. Soc. Rev. 2018, 47, 7203–7212. [Google Scholar] [CrossRef]
- Wang, D.; Pan, J.; Lan, T.; Chu, J.; Fan, C.; Yuan, H.; Wu, Y.; Yang, A.; Wang, X.; Rong, M. Tellurene Nanoflake-Based Gas Sensors for the Detection of Decomposition Products of SF6. ACS Appl. Nano Mater. 2020, 3, 7587–7594. [Google Scholar] [CrossRef]
- Caliskan, S.; Hazar, F. First Principles Study on the Spin Unrestricted Electronic Structure Properties of Transition Metal Doped InN Nanoribbons. Superlattices Microstruct. 2015, 84, 170–180. [Google Scholar] [CrossRef]
- Ping, J.; Fan, Z.; Sindoro, M.; Ying, Y.; Zhang, H. Recent Advances in Sensing Applications of Two-Dimensional Transition Metal Dichalcogenide Nanosheets and Their Composites. Adv. Funct. Mater. 2017, 27, 1605817. [Google Scholar] [CrossRef]
- Xu, L.; Gui, Y.; Li, W.; Li, Q.; Chen, X. Gas-Sensing Properties of Ptn-Doped WSe2 to SF6 Decomposition Products. J. Ind. Eng. Chem. 2021, 97, 452–459. [Google Scholar] [CrossRef]
- Wang, D.; Lan, T.; Pan, J.; Liu, Z.; Yang, A.; Yang, M.; Chu, J.; Yuan, H.; Wang, X.; Li, Y.; et al. Janus MoSSe Monolayer: A Highly Strain-Sensitive Gas Sensing Material to Detect SF6 Decompositions. Sens. Actuators A Phys. 2020, 311, 112049. [Google Scholar] [CrossRef]
- Yi, W.; Chen, X.; Wang, Z.; Ding, Y.; Yang, B.; Liu, X. A Novel Two-Dimensional δ-InP3 Monolayer with High Stability, Tunable Bandgap, High Carrier Mobility, and Gas Sensing of NO2. J. Mater. Chem. C Mater. 2019, 7, 7352–7359. [Google Scholar] [CrossRef]
- Jing, Y.; Ma, Y.; Li, Y.; Heine, T. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Lett. 2017, 17, 1833–1838. [Google Scholar] [CrossRef]
- Lu, N.; Zhuo, Z.; Guo, H.; Wu, P.; Fa, W.; Wu, X.; Zeng, X.C. CaP3: A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility. J. Phys. Chem. Lett. 2018, 9, 1728–1733. [Google Scholar] [CrossRef]
- Ares, P.; Palacios, J.J.; Abellán, G.; Gómez-Herrero, J.; Zamora, F. Recent Progress on Antimonene: A New Bidimensional Material. Adv. Mater. 2018, 30, 1703771. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Chen, Z.; Wang, Y.; Gao, H.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. Recent Progress in 2D Group-VA Semiconductors: From Theory to Experiment. Chem. Soc. Rev. 2018, 47, 982–1021. [Google Scholar] [CrossRef]
Discharge Type | Discharge Motor Theory | Signal Characteristics | Duration | Discharge Energy/J | Gas Products | Refs. |
---|---|---|---|---|---|---|
Arc discharge | Current interruption of circuit breakers, short circuits in gas chambers, and disconnector operation | Temperatures up to 20,000 K, more than a few KA | Tens to hundreds of milliseconds | 105–107 | SOF2, SO2F2, SF2, SF4, S2F2, SOF, SO2, HF, CO2, H2S, and COF2 | [11,12] |
Spark discharge | Air gap capacitive discharge, such as breakdown during high-voltage tests | High instantaneous current | Microseconds | 10−1–102 | SF4, S2F2, SOF2, SOF4, SO2F2, SO2, S2OF10, S2O2F10, and S2F10 | [12,13] |
Thermal decomposition | When high-frequency current passes through the contact of the oxide layer; electrical fault or short circuit caused by damaged insulation or excessive current load. | 373 K–473 K | - | - | SF4, SF2, SO2, CS2, SOF4, SO2F2, H2S, SO2, SOF2, S2OF10, and CO | [3,12,14] |
Corona or partial discharge | Caused by defects on the electrode surface | 10–105 pC | 0.1–10 ms | 10−3–10−2 | CF4, SOF4, SO2, SO2F2, HF, SOF2, CS2, H2S, and CO2 | [11,13,15] |
Technique | Advantages | Defaults | Gas | Response Time | LOD | Ref. |
---|---|---|---|---|---|---|
NDIR | Fast response speed, high sensitivity, high spectral resolution,; remote, and real-time online monitoring | Limited applicability and low sensitivity | SF6 | <25 s | 1 ppmv | [21] |
QEPAS | Strong anti-interference ability to external noise, small size, and fast response | Signal strength needs to be improved | CO | 3 min | 10 ppbv | [9] |
H2O | 1 s | 0.49 ppmv | [22] | |||
SF6 | 0.4 s | 4.6 ppbv | [31] | |||
CEPAS | High selectivity and sensitivity and wide detection range | High cost and limited scope of application | SO2 | 35 ppbv | [39] | |
CO | - | 5.1 ppmv | [41] | |||
TIR | High resolution, fast response, large number of detectable elements, high detection accuracy, and strong anti-interference ability | The existence of cross-interference | SO2 | - | 58.03 | [45] |
SO2F2 | - | 55.95 | ||||
CS2 | - | 60.72 | ||||
TDLAS | Fast response speed, high sensitivity, and high spectral resolution | Severe cross-interference | HF | - | 3 ppmv | [46] |
SO2F2 | 1.01 ppmv | [47] | ||||
SOF2 | 1.03 ppmv | |||||
RS | Enables simultaneous analysis of most gases | The Raman scattering cross-section is relatively small, and the signal is weak | CO | 20 s | 1.22 ppmv | [10] |
SF6 | 5.4 ppmv | |||||
GC | Can detect most of the gas components | High cost, long response time, large volume, and not suitable for online monitoring or portable testing | SOF2, SO2F2, SO2, and SF4 | - | μL/L (ppmv) | [53] |
IMS | Fast response, high sensitivity, low cost, and simple operation | Poor selectivity | SF6 | <1 s | 0.16–0.68 ppmv | [54] |
Detection tube | Strong pertinence and less gas consumption | Easy to be affected by temperature and humidity, low stability, and high cross-sensitivity | SO2, H2S, CO, CS2, and HF | - | μL/L | [56,57] |
Nanotechnology and memory sensors | Low cost, low energy consumption, high performance and compact | Temperature and humidity effect is large; Poor selectivity | SF6 | - | ppt level | [58,59] |
Materials | Eg (eV) | Gas Molecules | Ead (eV) | QT (e) | d (Å) | Donor/Acceptor | Eg (eV) | Refs. |
---|---|---|---|---|---|---|---|---|
Rh-BN monolayer | 1.223 | H2S | −2.236 | 0.108 | - | acceptor | 2.352 | [82] |
SO2 | −2.328 | −0.294 | - | donor | 2.124 | |||
SOF2 | −3.411 | −0.509 | - | donor | 1.813 | |||
SO2F2 | −3.286 | −0.640 | - | Donor | 1.691 | |||
Ni-ZnO monolayer | 1.100 | SO2 | −2.38 | −0.183 | 1.89 | donor | 1.515 | [92] |
SOF2 | −2.19 | −0.148 | 1.95 | donor | 1.547 | |||
Monolayer tellurium | 1.233 | HF | −0.314 | −0.016 | 3.919 | donor | 1.214 | [93] |
SOF2 | −0.345 | −0.093 | 3.590 | donor | 1.231 | |||
SO2 | −0.382 | −0.158 | 3.278 | donor | 1.071 | |||
SO2F2 | −0.231 | −0.007 | 3.798 | donor | 1.219 | |||
H2S | −0.317 | 0.026 | 3.651 | acceptor | 1.225 | |||
Ru-InN monolayer | 0.359 | SO2 | −2.58 | −0.446 | 2.086 | donor | 0.149 | [94] |
SOF2 | −2.37 | −0.680 | 2.124 | donor | 0.121 | |||
SO2F2 | −2.61 | −0.773 | 2.062 | donor | 0.139 | |||
Phosphorene | - | SO2 | −0.382 | −0.118 | 2.852 | donor | - | [95] |
H2S | −0.208 | −0.047 | 2.366 | donor | - | |||
InP3 monolayer | 1.018 | SO2 | −1.54 | −0.28 | 2.30 | donor | 1.071 | [96] |
SOF2 | −0.77 | −0.12 | 2.73 | donor | 0.983 | |||
SO2F2 | −0.31 | −0.05 | 3.51 | acceptor | 1.017 | |||
monolayer SbP | 0.28 | H2S | −0.269 | −0.013 | 3.608 | donor | 1.42 | [97] |
SO2 | −0.541 | −0.232 | 2.974 | donor | 1.76 | |||
HF | −0.315 | −0.160 | 2.214 | donor | 1.42 | |||
SOF2 | −0.286 | −0.04 | 3.506 | donor | 2.05 | |||
SO2F2 | −0.255 | 0.02 | 3.554 | acceptor | 2.05 | |||
Stone-Wales (SW) defective Sb | - | H2S | −0.464 | 0.028 | - | acceptor | - | [98] |
SO2 | −0.731 | 0.258 | - | acceptor | - | |||
SOF2 | −0.528 | 0.080 | - | acceptor | - | |||
SO2F2 | −0.400 | 0.071 | - | acceptor | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, S.; Chen, C.; Zhang, Q.; Sultana, R.; Han, Y. Monitoring and Leak Diagnostics of Sulfur Hexafluoride and Decomposition Gases from Power Equipment for the Reliability and Safety of Power Grid Operation. Appl. Sci. 2024, 14, 3844. https://doi.org/10.3390/app14093844
Yang L, Wang S, Chen C, Zhang Q, Sultana R, Han Y. Monitoring and Leak Diagnostics of Sulfur Hexafluoride and Decomposition Gases from Power Equipment for the Reliability and Safety of Power Grid Operation. Applied Sciences. 2024; 14(9):3844. https://doi.org/10.3390/app14093844
Chicago/Turabian StyleYang, Luxi, Song Wang, Chuanmin Chen, Qiyu Zhang, Rabia Sultana, and Yinghui Han. 2024. "Monitoring and Leak Diagnostics of Sulfur Hexafluoride and Decomposition Gases from Power Equipment for the Reliability and Safety of Power Grid Operation" Applied Sciences 14, no. 9: 3844. https://doi.org/10.3390/app14093844
APA StyleYang, L., Wang, S., Chen, C., Zhang, Q., Sultana, R., & Han, Y. (2024). Monitoring and Leak Diagnostics of Sulfur Hexafluoride and Decomposition Gases from Power Equipment for the Reliability and Safety of Power Grid Operation. Applied Sciences, 14(9), 3844. https://doi.org/10.3390/app14093844