Adipose Stem Cell Response to Borophosphate Bioactive Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Glass Preparation
2.3. Cell Culture
2.3.1. Adipose Stem Cells
2.3.2. Dermal Microvascular Endothelial Cells
2.4. Glass Characterization
2.5. Cell Viability
2.6. Differentiation
2.7. Migration
2.8. Cytokine Array
2.9. Statistics
3. Results
3.1. Glass Properties
3.2. A High Concentration of BPBGs Reduced ASC Viability at 72 h
3.3. BPBG Affects ASCs Differentiation
3.4. pH-Neutral BPBGs Attract ASCs, While ASCs Treated with Alkaline BPBGs Attract ECs
3.5. BPBG Alters ASC Secretome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive Glasses: Where Are We and Where Are We Going? J. Funct. Biomater. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. Part A 2014, 102, 254–274. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive glass in tissue engineering. Acta Biomater. 2011, 7, 2355–2373. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef]
- Mehrabi, T.; Mesgar, A.S.; Mohammadi, Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater. Sci. Eng. 2020, 6, 5399–5430. [Google Scholar] [CrossRef]
- Yao, A.; Wang, D.; Huang, W.; Fu, Q.; Rahaman, M.N.; Day, D.E. In Vitro Bioactive Characteristics of Borate-Based Glasses with Controllable Degradation Behavior. J. Am. Ceram. Soc. 2007, 90, 303–306. [Google Scholar] [CrossRef]
- Fu, Q.; Rahaman, M.N.; Fu, H.; Liu, X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. Part A 2010, 95, 164–171. [Google Scholar] [CrossRef]
- Huang, W.; Day, D.E.; Kittiratanapiboon, K.; Rahaman, M.N. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 2006, 17, 583–596. [Google Scholar] [CrossRef]
- Fu, H.; Fu, Q.; Zhou, N.; Huang, W.; Rahaman, M.N.; Wang, D.; Liu, X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C 2009, 29, 2275–2281. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, J.; Zhang, C.; Wang, H.; Huang, W.; Guo, S.; Niu, X.; Xie, Z.; Wang, Y. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs. Biomed. Mater. Bristol Engl. 2015, 10, 065011. [Google Scholar] [CrossRef]
- Kargozar, S.; Baino, F.; Hamzehlou, S.; Hill, R.G.; Mozafari, M. Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends Biotechnol. 2018, 36, 430–444. [Google Scholar] [CrossRef]
- Zhao, S.; Li, L.; Wang, H.; Zhang, Y.; Cheng, X.; Zhou, N.; Rahaman, M.N.; Liu, Z.; Huang, W.; Zhang, C. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 2015, 53, 379–391. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Hupa, L.; Jokic, B.; Detsch, R.; Grünewald, A.; Boccaccini, A.R. Angiogenic potential of boron-containing bioactive glasses: In vitro study. J. Mater. Sci. 2017, 52, 8785–8792. [Google Scholar] [CrossRef]
- Thyparambil, N.J.; Gutgesell, L.C.; Hurley, C.C.; Flowers, L.E.; Day, D.E.; Semon, J.A. Adult stem cell response to doped bioactive borate glass. J. Mater. Sci. Mater. Med. 2020, 31, 13. [Google Scholar] [CrossRef]
- Jones, J.R.; Sepulveda, P.; Hench, L.L. Dose-dependent behavior of bioactive glass dissolution. J. Biomed. Mater. Res. 2001, 58, 720–726. [Google Scholar] [CrossRef]
- Qazi, T.H.; Hafeez, S.; Schmidt, J.; Duda, G.N.; Boccaccini, A.R.; Lippens, E. Comparison of the effects of 45S5 and 1393 bioactive glass microparticles on hMSC behavior. J. Biomed. Mater. Res. Part A 2017, 105, 2772–2782. [Google Scholar] [CrossRef]
- Kellum, J.A. Determinants of blood pH in health and disease. Crit. Care Lond. Engl. 2000, 4, 6–14. [Google Scholar] [CrossRef]
- Hohenbild, F.; Arango-Ospina, M.; Moghaddam, A.; Boccaccini, A.R.; Westhauser, F. Preconditioning of Bioactive Glasses before Introduction to Static Cell Culture: What Is Really Necessary? Methods Protoc. 2020, 3, 38. [Google Scholar] [CrossRef]
- Carta, D.; Qiu, D.; Guerry, P.; Ahmed, I.; Neel, E.A.A.; Knowles, J.C.; Smith, M.E.; Newport, R.J. The effect of composition on the structure of sodium borophosphate glasses. J. Non-Cryst. Solids 2008, 354, 3671–3677. [Google Scholar] [CrossRef]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 2004, 25, 491–499. [Google Scholar] [CrossRef]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system. Biomaterials 2004, 25, 501–507. [Google Scholar] [CrossRef]
- Mneimne, M.; Hill, R.G.; Bushby, A.J.; Brauer, D.S. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater. 2011, 7, 1827–1834. [Google Scholar] [CrossRef]
- Saranti, A.; Koutselas, I.; Karakassides, M.A. Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. J. Non-Cryst. Solids 2006, 352, 390–398. [Google Scholar] [CrossRef]
- Li, A.; Lv, Y.; Ren, H.; Cui, Y.; Wang, C.; Martin, R.A.; Qiu, D. In vitro evaluation of a novel pH neutral calcium phosphosilicate bioactive glass that does not require preconditioning prior to use. Int. J. Appl. Glass Sci. 2017, 8, 403–411. [Google Scholar] [CrossRef]
- Massera, J.; Shpotyuk, Y.; Sabatier, F.; Jouan, T.; Boussard-Plédel, C.; Roiland, C.; Bureau, B.; Petit, L.; Boetti, N.G.; Milanese, D.; et al. Processing and characterization of novel borophosphate glasses and fibers for medical applications. J. Non-Cryst. Solids 2015, 425, 52–60. [Google Scholar] [CrossRef]
- Bromet, B.A.; Blackwell, N.P.; Abokefa, N.; Freudenberger, P.; Blatt, R.L.; Brow, R.K.; Semon, J.A. The angiogenic potential of pH-neutral borophosphate bioactive glasses. J. Biomed. Mater. Res. Part A 2023, 111, 1554–1564. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, J.A.; Facile, T.; Patrick, R.J.; Francis, K.R.; Milanovich, S.; Weimer, J.M.; Kota, D.J. Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl. Med. 2017, 6, 1096–1108. [Google Scholar] [CrossRef]
- Gimble, J.M.; Guilak, F.; Bunnell, B.A. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res. Ther. 2010, 1, 19. [Google Scholar] [CrossRef]
- Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar] [CrossRef]
- De Francesco, F.; Ricci, G.; D’Andrea, F.; Nicoletti, G.F.; Ferraro, G.A. Human Adipose Stem Cells: From Bench to Bedside. Tissue Eng. Part B Rev. 2015, 21, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Al-Nbaheen, M.; Vishnubalaji, R.; Ali, D.; Bouslimi, A.; Al-Jassir, F.; Megges, M.; Prigione, A.; Adjaye, J.; Kassem, M.; Aldahmash, A. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential. Stem Cell Rev. Rep. 2013, 9, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, F.; Palumbo, P.; Augello, F.R.; Cifone, M.G.; Cinque, B.; Giuliani, M. Secretome of Adipose Tissue-Derived Stem Cells (ASCs) as a Novel Trend in Chronic Non-Healing Wounds: An Overview of Experimental In Vitro and In Vivo Studies and Methodological Variables. Int. J. Mol. Sci. 2019, 20, 3721. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, T.; Sun, J.; Shen, M.; Xue, X.; Chen, Y.; Zhang, Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res. Ther. 2019, 10, 196. [Google Scholar] [CrossRef]
- Kumar, P.; Kandoi, S.; Misra, R.; Vijayalakshmi, S.; Rajagopal, K.; Verma, R.S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kilroy, G.E.; Foster, S.J.; Wu, X.; Ruiz, J.; Sherwood, S.; Heifetz, A.; Ludlow, J.W.; Stricker, D.M.; Potiny, S.; Green, P.; et al. Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors. J. Cell. Physiol. 2007, 212, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Gorgani, S.; Hosseini, S.A.; Wang, A.Z.; Baino, F.; Kargozar, S. Effects of Bioactive Glasses (BGs) on Exosome Production and Secretion: A Critical Review. Mater. Basel Switz. 2023, 16, 4194. [Google Scholar] [CrossRef] [PubMed]
- Freudenberger, P.T.; Blatt, R.L.; Youngman, R.E.; Brow, R.K. Network structures and the properties of Na-Ca-Sr-borophosphate glasses. J. Non-Cryst. Solids 2023, 600, 121966. [Google Scholar] [CrossRef]
- Freudenberger, P.T.; Blatt, R.L.; Brow, R.K. Dissolution rates of borophosphate glasses in deionized water and in simulated body fluid. J. Non-Cryst. Solids X 2023, 18, 100181. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/36406.html (accessed on 5 March 2024).
- Baek, S.J.; Kang, S.K.; Ra, J.C. In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp. Mol. Med. 2011, 43, 596–603. [Google Scholar] [CrossRef]
- de Lucas, B.; Pérez, L.M.; Gálvez, B.G. Importance and regulation of adult stem cell migration. J. Cell. Mol. Med. 2018, 22, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lei, H.; Dong, P.; Fu, X.; Yang, Z.; Yang, Y.; Ma, J.; Liu, X.; Cao, Y.; Xiao, R. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant. 2017, 26, 1505–1519. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Liu, G.; Halim, A.; Ju, Y.; Luo, Q.; Song, G. Mesenchymal Stem Cell Migration and Tissue Repair. Cells 2019, 8, 784. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Ojansivu, M.; Autio, R.; Vanhatupa, S.; Miettinen, S.; Massera, J. In-vitro dissolution characteristics and human adipose stem cell response to novel borophosphate glasses. J. Biomed. Mater. Res. Part A 2019, 107, 2099–2114. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Mann-Collura, O.; Fling, J.; Edara, N.; Hetz, R.; Razzaque, M.S. High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells. FASEB J. 2021, 35, e20997. [Google Scholar] [CrossRef] [PubMed]
- Damaghi, M.; Wojtkowiak, J.; Gillies, R. pH sensing and regulation in cancer. Front. Physiol. 2013, 4, 70349. [Google Scholar] [CrossRef] [PubMed]
- Barradas, A.M.C.; Monticone, V.; Hulsman, M.; Danoux, C.; Fernandes, H.; Birgani, Z.T.; Groot, F.B.-D.; Yuan, H.; Reinders, M.; Habibovic, P.; et al. Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integr. Biol. Quant. Biosci. Nano Macro 2013, 5, 920–931. [Google Scholar] [CrossRef]
- Durand, L.A.H.; Góngora, A.; López, J.M.P.; Boccaccini, A.R.; Zago, M.P.; Baldi, A.; Gorustovich, A. In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2-CaO-P2O5-Na2O system. J. Mater. Chem. B 2014, 2, 7620–7630. [Google Scholar] [CrossRef]
- Lin, Y.; Brown, R.F.; Jung, S.B.; Day, D.E. Angiogenic effects of borate glass microfibers in a rodent model. J. Biomed. Mater. Res. Part A 2014, 102, 4491–4499. [Google Scholar] [CrossRef]
- Durand, L.A.H.; Vargas, G.E.; Romero, N.M.; Vera-Mesones, R.; Porto-López, J.M.; Boccaccini, A.R.; Zago, M.P.; Baldi, A.; Gorustovich, A. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J. Mater. Chem. B 2015, 3, 1142–1148. [Google Scholar] [CrossRef]
- Li, K.; Lu, X.; Razanau, I.; Wu, X.; Hu, T.; Liu, S.; Xie, Y.; Huang, L.; Zheng, X. The enhanced angiogenic responses to ionic dissolution products from a boron-incorporated calcium silicate coating. Mater. Sci. Eng. C 2019, 101, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Hazehara-Kunitomo, Y.; Hara, E.S.; Ono, M.; Aung, K.T.; Komi, K.; Pham, H.T.; Akiyama, K.; Okada, M.; Oohashi, T.; Matsumoto, T.; et al. Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells. Int. J. Mol. Sci. 2019, 20, 1097. [Google Scholar] [CrossRef] [PubMed]
- Abdik, E.A.; Abdik, H.; Taşlı, P.N.; Deniz, A.A.H.; Şahin, F. Suppressive Role of Boron on Adipogenic Differentiation and Fat Deposition in Human Mesenchymal Stem Cells. Biol. Trace Elem. Res. 2019, 188, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Vuornos, K.; Ojansivu, M.; Koivisto, J.T.; Häkkänen, H.; Belay, B.; Montonen, T.; Huhtala, H.; Kääriäinen, M.; Hupa, L.; Kellomäki, M.; et al. Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Ojansivu, M.; Mishra, A.; Vanhatupa, S.; Juntunen, M.; Larionova, A.; Massera, J.; Miettinen, S. The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS ONE 2018, 13, e0202740. [Google Scholar] [CrossRef] [PubMed]
- Ojansivu, M.; Hyväri, L.; Kellomäki, M.; Hupa, L.; Vanhatupa, S.; Miettinen, S. Bioactive glass induced osteogenic differentiation of human adipose stem cells is dependent on cell attachment mechanism and mitogen-activated protein kinases. Eur. Cells Mater. 2018, 35, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.J.B.O.G.; Reis, R.L.G.; Sousa, N.J.C.; Gimble, J.M. Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 2010, 5, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Lo, C.-W.; Barati, D.; Conrad, B.; Lin, T.; Kohno, Y.; Utsunomiya, T.; Zhang, N.; Maruyama, M.; Rhee, C.; et al. Interleukin-4 overexpressing mesenchymal stem cells within gelatin-based microribbon hydrogels enhance bone healing in a murine long bone critical-size defect model. J. Biomed. Mater. Res. Part A 2020, 108, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Fan, Y.; Torre, E.; Balasubramanian, P.; Taccardi, N.; Cassinelli, C.; Morra, M.; Iviglia, G.; Boccaccini, A.R. Incorporation of Boron in Mesoporous Bioactive Glass Nanoparticles Reduces Inflammatory Response and Delays Osteogenic Differentiation. Part. Part. Syst. Charact. 2020, 37, 2000054. [Google Scholar] [CrossRef]
- Rahmati, M.; Mozafari, M. Selective Contribution of Bioactive Glasses to Molecular and Cellular Pathways. ACS Biomater. Sci. Eng. 2020, 6, 4–20. [Google Scholar] [CrossRef]
- Angelova, M.I.; Bitbol, A.-F.; Seigneuret, M.; Staneva, G.; Kodama, A.; Sakuma, Y.; Kawakatsu, T.; Imai, M.; Puff, N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochim. Biophys. Acta BBA—Biomembr. 2018, 1860, 2042–2063. [Google Scholar] [CrossRef] [PubMed]
- Kim, N. pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod. Med. Biol. 2020, 20, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Engelman, D.M.; Reshetnyak, Y.K.; Andreev, O.A. Mapping pH at Cancer Cell Surfaces. Mol. Imaging Biol. 2019, 21, 1020. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Moshnikova, A.; Engelman, D.M.; Reshetnyak, Y.K.; Andreev, O.A. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc. Natl. Acad. Sci. USA 2016, 113, 8177–8181. [Google Scholar] [CrossRef] [PubMed]
Reagent | Vendor | Location |
---|---|---|
α-MEM | Sigma | St Louis, MO, USA |
Adipogenic Media | Lonza | Walkersville, MD, USA |
Alizarin Red | Sigma | St Louis, MO, USA |
Antibiotic/antimycotic | Sigma | St Louis, MO, USA |
ASCs | Obatala Sciences, LLC | New Orleans, LA, USA |
CaCO3 | Fisher Scientific | Rochester, NY, USA |
Ca(PO3)2 | Shanghai Muhong Industrial Co, Ltd. | Shanghai, China |
Endothelial Cell Media | Lonza | Walkersville, MD, USA |
FBS | VWR | Dixon, IL, USA |
H3BO3 | Fisher Scientific | Rochester, NY, USA |
H3PO4 | Fisher Scientific | Rochester, NY, USA |
HMVEC-d | Lonza | Walkersville, MD, USA |
L-glutamine | Sigma | St Louis, MO, USA |
Live/Dead stain | Fisher Scientific | Rochester, NY, USA |
Na2CO3 | Alfa Aesar | Ward Hill, MA, USA |
NaPO3 | Shanghai Muhong Industrial Co, Ltd. | Shanghai, China |
Oil Red O | Sigma | St Louis, MO, USA |
Osteogenesis Media | Lonza | Walkersville, MD, USA |
PBS | Sigma | St Louis, MO, USA |
Quantibody Array | RayBiotech | Norcross, GA, USA |
Trypsin/EDTA | Sigma | St Louis, MO, USA |
Glass Designation | Na2O | CaO | B2O3 | P2O5 | Tm (°C) |
---|---|---|---|---|---|
X0 | 14.2 ± 0.1 | 25.5 ± 0.1 | 0.0 ± 0.3 | 60.4 ± 0.5 | 1050 |
X40 | 14.1 ± 0.1 | 24.2 ± 0.2 | 40.6 ± 0.2 | 21.2 ± 0.1 | 1150 |
X60 | 15.2 ± 0.1 | 24.3 ± 0.2 | 60.5 ± 0.2 | 0.0 ± 0.0 | 1000 |
Sample | Time (h) | pH | Ions Released | ||||||
---|---|---|---|---|---|---|---|---|---|
DI | CCM | P | B | Ca | |||||
ppm | % | ppm | % | ppm | % | ||||
CCM | 5 | ND | 7.32 | 34.80 ± 1.45 | ND | ND | ND | 65.82 ± 2.68 | ND |
24 | ND | 7.53 | 36.65 ± 0.88 | ND | ND | ND | 68.41 ± 1.07 | ND | |
X0 | 5 | ND | 7.23 | 72.04 ± 0.47 | 4 | ND | ND | 68.84 ± 2.67 | 1 |
24 | 2.6 | 7.49 | 197.03 ± 5.91 | 19 | ND | ND | 101.28 ± 1.64 | 15 | |
X40 | 5 | ND | 7.25 | 121.06 ± 3.61 | 22 | 126.10 ± 1.46 | 46 | 82.36 ± 1.37 | 5 |
24 | 7.1 | 7.39 | 176.01 ± 4.24 | 36 | 217.40 ± 1.06 | 80 | 73.26 ± 1.11 | 2 | |
X60 | 5 | ND | 7.86 | 23.27 ± 0.30 | ND | 249.43 ± 8.00 | 50 | 173.16 ± 3.79 | 29 |
24 | 8.6 | 7.67 | 24.96 ± 0.18 | ND | 301.26 ± 6.03 | 61 | 201.43 ± 5.03 | 36 |
CCM | X0 | X40 | X60 | |
---|---|---|---|---|
I-309 | 1.77 ± 0.57 | 1.98 ± 0.00 | 0.05 ± 0.07 | 0 ± 0 |
ENA-78 | 5.72 ± 0.58 | 16.91 ± 0.94 | 34.72 ± 18.34 | 64.43 ± 19.25 |
IL-6 | 2701.45 ± 26.1 | 3118.31 ± 41.64 | 3865.87 ± 254.17 | 4109.95 ± 226.75 |
MIP-1b | 68.36 ± 13.41 | 70.92 ± 4.68 | 92.55 ± 2.58 | 96.42 ± 2.91 |
VEGF | 92.27 ± 2.51 | 94.50 ± 3.18 | 137.6 ± 14.54 | 294.71 ± 7.60 |
Activin A | 280.68 ± 3.43 | 43.34 ± 4.66 | 112.34 ± 40.94 | 725.43 ± 86.71 |
IL-1R4 | 68.35 ± 53.92 | 2.01 ± 2.84 | 8.3 ± 11.74 | 158.44 ± 43.02 |
TGFβ1 | 32.84 ± 3.69 | 21.13 ± 1.78 | 27.32 ± 2.82 | 39.70 ± 1.17 |
TNFR1 | 201.07 ± 8.25 | 185.55 ± 14.8 | 188.68 ± 14.05 | 289.75 ± 0.51 |
TRAIL R3 | 22.90 ± 7.87 | 19.34 ± 1.15 | 22.52 ± 2.56 | 35.79 ± 0.92 |
Contactin-2 | 54.06 ± 25.45 | 34.79 ± 23.03 | 39.99 ± 15.39 | 41.34 ± 11.09 |
Dtk | 45.79 ± 10.57 | 29.92 ± 40.39 | 37.39 ± 6.93 | 43.84 ± 12.14 |
IL-1RI | 9.29 ± 0.58 | 1.51 ± 0.18 | 2.36 ± 0.29 | 8 ± 1.02 |
IL-17R | 32.17 ± 0.49 | 14.40 ± 18.02 | 17.93 ± 1.26 | 30.14 ± 5.68 |
L-selectin | 149.13 ± 58.12 | 4.84 ± 6.85 | 10.85 ± 12.99 | 144.18 ± 23.18 |
MICB | 356.25 ± 61.86 | 241.29 ± 140.6 | 322.14 ± 82.21 | 339.68 ± 24.5 |
PAI-1 | 4466.23 ± 255.95 | 3381.66 ± 472.87 | 3408.96 ± 451.51 | 3876.75 ± 261.23 |
PDGF Rb | 441.62 ± 174.57 | 0 ± 0 | 70.73 ± 99.85 | 149.87 ± 193.95 |
RAGE | 7.73 ± 1.51 | 2.63 ± 2.2 | 3.02 ± 2.71 | 5.72 ± 1.28 |
TIMP-2 | 12,795.45 ± 1190.17 | 6473.49 ± 1026.09 | 7645.48 ± 155.76 | 8481.24 ± 400.92 |
Trappin-2 | 15.2 ± 1.92 | 3.47 ± 0.47 | 8.47 ± 2.55 | 11.78 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abokefa, N.A.; Bromet, B.A.; Blatt, R.L.; Pickett, M.S.; Brow, R.K.; Semon, J.A. Adipose Stem Cell Response to Borophosphate Bioactive Glass. Appl. Sci. 2024, 14, 3906. https://doi.org/10.3390/app14093906
Abokefa NA, Bromet BA, Blatt RL, Pickett MS, Brow RK, Semon JA. Adipose Stem Cell Response to Borophosphate Bioactive Glass. Applied Sciences. 2024; 14(9):3906. https://doi.org/10.3390/app14093906
Chicago/Turabian StyleAbokefa, Nada A., Bradley A. Bromet, Rebekah L. Blatt, Makenna S. Pickett, Richard K. Brow, and Julie A. Semon. 2024. "Adipose Stem Cell Response to Borophosphate Bioactive Glass" Applied Sciences 14, no. 9: 3906. https://doi.org/10.3390/app14093906
APA StyleAbokefa, N. A., Bromet, B. A., Blatt, R. L., Pickett, M. S., Brow, R. K., & Semon, J. A. (2024). Adipose Stem Cell Response to Borophosphate Bioactive Glass. Applied Sciences, 14(9), 3906. https://doi.org/10.3390/app14093906