Bioimpedance Spectra Confirm Breast Cancer Cell Secretome Induces Early Changes in the Cytoskeleton and Migration of Mesenchymal Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Cell Culture of MSCs
2.2. Culture of Breast Cancer Cells and Obtaining Its Secretome
2.3. Migration of MSCs and Cell Morphology
2.4. Cytoskeleton Structure Analysis
2.5. Assay of Bioimpedance for the Early Detection of Changes Induced by the Secretome Treatment on MSCs
3. Results
3.1. Morphological Changes and Modification in Motility (Migration) Induced by the Secretome Treatment on MSCs
3.2. Tumoral Secretome Modified Actin Fiber Organization
3.3. Changes in Electrical Bioimpedance Induced by the 48 h Secretome but Not the 24 h Secretome
3.4. Molecular Pattern of MSCs Under Tumor-Cell-Conditioned 48 h Media over 48 and 72 h
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, C.; McKee, C.; Bakshi, S.; Walker, K.; Hakman, E.; Halassy, S.; Svinarich, D.; Dodds, R.; Govind, C.K.; Chaudhry, G.R. Mesenchymal Stem Cells: Cell Therapy and Regeneration Potential. J. Tissue Eng. Regen. Med. 2019, 13, 1738–1755. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef]
- Najar, M.; Bouhtit, F.; Melki, R.; Afif, H.; Hamal, A.; Fahmi, H.; Merimi, M.; Lagneaux, L. Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges. J. Clin. Med. 2019, 8, 626. [Google Scholar] [CrossRef]
- Vasanthan, J.; Gurusamy, N.; Rajasingh, S.; Sigamani, V.; Kirankumar, S.; Thomas, E.L.; Rajasingh, J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells 2020, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Hmadcha, A.; Martin-Montalvo, A.; Gauthier, B.R.; Soria, B.; Capilla-Gonzalez, V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front. Bioeng. Biotechnol. 2020, 8, 515258. [Google Scholar] [CrossRef] [PubMed]
- Costela-Ruiz, V.J.; Melguizo-Rodríguez, L.; Bellotti, C.; Illescas-Montes, R.; Stanco, D.; Arciola, C.R.; Lucarelli, E. Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications. Int. J. Mol. Sci. 2022, 23, 6356. [Google Scholar] [CrossRef]
- Nagamura-Inoue, T.; He, H. Umbilical Cord-Derived Mesenchymal Stem Cells: Their Advantages and Potential Clinical Utility. World J. Stem Cells 2014, 6, 195–202. [Google Scholar] [CrossRef]
- Fiori, A.; Terlizzi, V.; Kremer, H.; Gebauer, J.; Hammes, H.-P.; Harmsen, M.C.; Bieback, K. Mesenchymal Stromal/Stem Cells as Potential Therapy in Diabetic Retinopathy. Immunobiology 2018, 223, 729–743. [Google Scholar] [CrossRef]
- Volkman, R.; Offen, D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017, 35, 1867–1880. [Google Scholar] [CrossRef]
- Cao, Y.; Gang, X.; Sun, C.; Wang, G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J. Diabetes Res. 2017, 2017, 9328347. [Google Scholar] [CrossRef]
- Danielyan, L.; Schwab, M.; Siegel, G.; Brawek, B.; Garaschuk, O.; Asavapanumas, N.; Buadze, M.; Lourhmati, A.; Wendel, H.-P.; Avci-Adali, M.; et al. Cell Motility and Migration as Determinants of Stem Cell Efficacy. eBioMedicine 2020, 60, 102989. [Google Scholar] [CrossRef] [PubMed]
- Chulpanova, D.S.; Kitaeva, K.V.; Tazetdinova, L.G.; James, V.; Rizvanov, A.A.; Solovyeva, V.V. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-Tumor Treatment. Front. Pharmacol. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal Stem Cells within Tumour Stroma Promote Breast Cancer Metastasis. Nature 2007, 449, 557–563. [Google Scholar] [CrossRef]
- Vishnubalaji, R.; Elango, R.; Al-Toub, M.; Manikandan, M.; Al-Rikabi, A.; Harkness, L.; Ditzel, N.; Atteya, M.; Hamam, R.; Alfayez, M.; et al. Neoplastic Transformation of Human Mesenchymal Stromal Cells Mediated via LIN28B. Sci. Rep. 2019, 9, 8101. [Google Scholar] [CrossRef]
- Prockop, D.J.; Brenner, M.; Fibbe, W.E.; Horwitz, E.; Le Blanc, K.; Phinney, D.G.; Simmons, P.J.; Sensebe, L.; Keating, A. Defining the Risks of Mesenchymal Stromal Cell Therapy. Cytotherapy 2010, 12, 576–578. [Google Scholar] [CrossRef]
- Yeo, S.K.; Guan, J.-L. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer 2017, 3, 753–760. [Google Scholar] [CrossRef]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and Current Knowledge of Breast Cancer. Biol. Res. 2017, 50, 33. [Google Scholar] [CrossRef]
- Contiero, P.; Boffi, R.; Borgini, A.; Fabiano, S.; Tittarelli, A.; Mian, M.; Vittadello, F.; Epifani, S.; Ardizzone, A.; Cirilli, C.; et al. Causes of Death in Women with Breast Cancer: A Risks and Rates Study on a Population-Based Cohort. Front. Oncol. 2023, 13, 1270877. [Google Scholar] [CrossRef]
- Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global Patterns of Breast Cancer Incidence and Mortality: A Population-Based Cancer Registry Data Analysis from 2000 to 2020. Cancer Commun. 2021, 41, 1183–1194. [Google Scholar] [CrossRef]
- Wang, F.; McLafferty, S.; Escamilla, V.; Luo, L. Late-Stage Breast Cancer Diagnosis and Health Care Access in Illinois. Prof. Geogr. 2008, 60, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.M.; Mokhtar, S.; El-Mansy, H. Factors Associated with Late-Stage Diagnosis of Breast Cancer among Egyptian Women. J. Public Health Res. 2022, 10, 2021. [Google Scholar] [CrossRef] [PubMed]
- Taplin, S.H.; Ichikawa, L.; Yood, M.U.; Manos, M.M.; Geiger, A.M.; Weinmann, S.; Gilbert, J.; Mouchawar, J.; Leyden, W.A.; Altaras, R.; et al. Reason for Late-Stage Breast Cancer: Absence of Screening or Detection, or Breakdown in Follow-Up? J. Natl. Cancer Inst. 2004, 96, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Arceo-Martínez, M.T.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Palomera-Sanchez, Z. Estado Actual del Cáncer de Mama en México: Principales Tipos y Factores de Riesgo. Mex. J. Oncol. 2021, 20, 101–110. [Google Scholar] [CrossRef]
- Prasad, A.; Alizadeh, E. Cell Form and Function: Interpreting and Controlling the Shape of Adherent Cells. Trends Biotechnol. 2019, 37, 347–357. [Google Scholar] [CrossRef]
- Bakal, C.; Aach, J.; Church, G.; Perrimon, N. Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology. Science 2007, 316, 1753–1756. [Google Scholar] [CrossRef]
- Settleman, J. Tension Precedes Commitment—Even for a Stem Cell. Mol. Cell 2004, 14, 148–150. [Google Scholar] [CrossRef]
- Fletcher, D.A.; Mullins, R.D. Cell Mechanics and the Cytoskeleton. Nature 2010, 463, 485–492. [Google Scholar] [CrossRef]
- Vallenius, T. Actin Stress Fibre Subtypes in Mesenchymal-Migrating Cells. Open Biol. 2013, 3, 130001. [Google Scholar] [CrossRef]
- Haasters, F.; Prall, W.C.; Anz, D.; Bourquin, C.; Pautke, C.; Endres, S.; Mutschler, W.; Docheva, D.; Schieker, M. Morphological and Immunocytochemical Characteristics Indicate the Yield of Early Progenitors and Represent a Quality Control for Human Mesenchymal Stem Cell Culturing. J. Anat. 2009, 214, 759–767. [Google Scholar] [CrossRef]
- Valente, S.; Ciavarella, C.; Hernández-Aguilera, A.; Salvador, F.A.; Buzzi, M.; Joven, J.; Pasquinelli, G. Phenotypic, Morphological, and Metabolic Characterization of Vascular-spheres from Human Vascular Mesenchymal Stem Cells. Microsc. Res. Tech. 2022, 85, 447. [Google Scholar] [CrossRef] [PubMed]
- Rojewski, M.T.; Weber, B.M.; Schrezenmeier, H. Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus. Med. Hemother. 2008, 35, 168. [Google Scholar] [CrossRef] [PubMed]
- Huether, S.E.; McCance, K.L. Understanding Pathophysiology. Available online: https://evolve.elsevier.com/cs/product/9780323370486?role=student (accessed on 24 May 2024).
- Ressel, L.; Finotello, R. Cytological Grading of Canine Cutaneous Mast Cell Tumours: Is Haematoxylin and Eosin Staining Better than May-Grünwald–Giemsa? Vet. Comp. Oncol. 2016, 15, 667–668. [Google Scholar] [CrossRef]
- Baba, A.I.; Câtoi, C. Comparative Oncology. Lucr. Tiinłifice Med. Vet. 2007, 41, 1–31. [Google Scholar]
- Klösgen, B.; Rümenapp, C.; Gleich, B. Bioimpedance Spectroscopy. In BetaSys; Springer: Berlin/Heidelberg, Germany, 2011; pp. 241–271. [Google Scholar] [CrossRef]
- Everitt, A.; Root, B.; Calnan, D.; Manwaring, P.; Bauer, D.; Halter, R. A Bioimpedance-Based Monitor for Real-Time Detection and Identification of Secondary Brain Injury. Sci. Rep. 2021, 11, 15454. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Horwitz, E.M.; Le Blanc, K.; Dominici, M.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Deans, R.J.; Krause, D.S.; Keating, A. Clarification of the Nomenclature for MSC: The International Society for Cellular Therapy Position Statement. Cytotherapy 2005, 7, 393–395. [Google Scholar] [CrossRef]
- Huerta-Nuñez, L.F.E.; Gutierrez-Iglesias, G.; Martinez-Cuazitl, A.; Mata-Miranda, M.M.; Alvarez-Jiménez, V.D.; Sánchez-Monroy, V.; Golberg, A.; González-Díaz, C.A. A Biosensor Capable of Identifying Low Quantities of Breast Cancer Cells by Electrical Impedance Spectroscopy. Sci. Rep. 2019, 9, 6419. [Google Scholar] [CrossRef]
- Abasi, S.; Aggas, J.R.; Garayar-Leyva, G.G.; Walther, B.K.; Guiseppi-Elie, A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Meas. Sci. Au 2022, 2022, 495–516. [Google Scholar] [CrossRef]
- Pliquett, U. Bioimpedance: A Review for Food Processing. Food Eng. Rev. 2010, 2, 74–94. [Google Scholar] [CrossRef]
- Angersbach, A.; Heinz, V.; Knorr, D. Evaluation of Process-Induced Dimensional Changes in the Membrane Structure of Biological Cells Using Impedance Measurement. Biotechnol. Prog. 2002, 18, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Angersbach, A.; Heinz, V.; Knorr, D. Electrophysiological Model of Intact and Processed Plant Tissues: Cell Disintegration Criteria. Biotechnol. Prog. 1999, 15, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Rafal, H.A.; Nahi Yosef, Y.; Shahlla, M.S.; Maeda, H.M.; Ahmed Majeed, A.-S. Direct and Simple Method for Mesenchymal Stem Cells Isolation, Culturing and Detection. Int. J. Stem Cell Res. Ther. 2018, 5, 54. [Google Scholar] [CrossRef]
- Svitkina, T. The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb. Perspect. Biol. 2018, 10, a018267. [Google Scholar] [CrossRef]
- Schirra, R.T., Jr.; Zhang, P. Correlative Fluorescence and Electron Microscopy. Curr. Protoc. Cytom. 2014, 70, 1–10. [Google Scholar] [CrossRef]
- Gómez, E.O.; Chirino, Y.I.; Delgado-Buenrostro, N.L.; López-Saavedra, A.; Meraz-Cruz, N.; López-Marure, R. Secretome Derived from Breast Tumor Cell Lines Alters the Morphology of Human Umbilical Vein Endothelial Cells. Mol. Membr. Biol. 2016, 33, 29–37. [Google Scholar] [CrossRef]
- Kiso, M.; Tanaka, S.; Saji, S.; Toi, M.; Sato, F. Long Isoform of VEGF Stimulates Cell Migration of Breast Cancer by Filopodia Formation via NRP1/ARHGAP17/Cdc42 Regulatory Network. Int. J. Cancer 2018, 143, 2905–2918. [Google Scholar] [CrossRef]
- Lee, M.-J.; Kim, D. The Correlation between YAP and RhoA Expression in Prostate and Ovarian Tumor Stroma. Asian Pac. J. Cancer Prev. 2022, 23, 281–285. [Google Scholar] [CrossRef]
- Qiao, G.; Wang, W.; Duan, W.; Zheng, F.; Sinclair, A.J.; Chatwin, C.R. Bioimpedance Analysis for the Characterization of Breast Cancer Cells in Suspension. IEEE Trans. Biomed. Eng. 2012, 59, 2321–2329. [Google Scholar] [CrossRef]
- Mansouri, S.; Alhadidi, T.; Ben Azouz, M. Breast Cancer Detection Using Low-Frequency Bioimpedance Device. Breast Cancer Targets Ther. 2020, 12, 109–116. [Google Scholar] [CrossRef]
- Moonen, H.P.F.X.; Van Zanten, A.R.H. Bioelectric Impedance Analysis for Body Composition Measurement and Other Potential Clinical Applications in Critical Illness. Curr. Opin. Crit. Care 2021, 27, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Leterrier, J.F. Water and the Cytoskeleton. Cell Mol. Biol. 2001, 47, 901–923. Available online: https://pubmed.ncbi.nlm.nih.gov/11728102/ (accessed on 27 June 2024). [PubMed]
- Li, Y.; Sun, S.X. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance. Biophys. J. 2018, 114, 2965–2973. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.; Zhu, T.; Zhu, J.; DiMeco, F.; Vescovi, A.L.; Heth, J.A.; Muraszko, K.M.; Fan, X.; Lubman, D.M. CD90 Is Identified as a Candidate Marker for Cancer Stem Cells in Primary High-Grade Gliomas Using Tissue Microarrays. Mol. Cell Proteom. 2012, 11, 010744. [Google Scholar] [CrossRef]
- Wiesmann, A.; Bühring, H.-J.; Mentrup, C.; Wiesmann, H.-P. Decreased CD90 Expression in Human Mesenchymal Stem Cells by Applying Mechanical Stimulation. Head Face Med. 2006, 2, 8. [Google Scholar] [CrossRef]
- Mancarella, S.; Serino, G.; Gigante, I.; Cigliano, A.; Ribback, S.; Sanese, P.; Grossi, V.; Simone, C.; Armentano, R.; Evert, M.; et al. Correction: CD90 Is Regulated by Notch1 and Hallmarks a More Aggressive Intrahepatic Cholangiocarcinoma Phenotype. J. Exp. Clin. Cancer Res. 2023, 42, 88. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Benetti, A.; Berenzi, A.; Gambarotti, M.; Garrafa, E.; Gelati, M.; Dessy, E.; Portolani, N.; Piardi, T.; Giulini, S.M.; Caruso, A.; et al. Transforming Growth Factor-Beta1 and CD105 Promote the Migration of Hepatocellular Carcinoma-Derived Endothelium. Cancer Res. 2008, 68, 8626–8634. [Google Scholar] [CrossRef]
- Fernandez-Pernas, P.; Rodríguez-Lesende, I.; De La Fuente, A.; Mateos, J.; Fuentes, I.; De Toro, J.; Blanco, F.J.; Arufe, M.C. CD105+-Mesenchymal Stem Cells Migrate into Osteoarthritis Joint: An Animal Model. PLoS ONE 2017, 12, e0188072. [Google Scholar] [CrossRef]
- Grubelnik, G.; Boštjančič, E.; Pavlič, A.; Kos, M.; Zidar, N. NANOG Expression in Human Development and Cancerogenesis. Exp. Biol. Med. 2020, 245, 456–464. [Google Scholar] [CrossRef]
- Khosravi, N.; Shahgoli, V.K.; Amini, M.; Safaei, S.; Mokhtarzadeh, A.; Mansoori, B.; Derakhshani, A.; Baghbanzadeh, A.; Baradaran, B. Suppression of Nanog Inhibited Cell Migration and Increased the Sensitivity of Colorectal Cancer Cells to 5-Fluorouracil. Eur. J. Pharmacol. 2021, 894, 173871. [Google Scholar] [CrossRef] [PubMed]
- Mannino, M.H.; Zhu, Z.; Xiao, H.; Bai, Q.; Wakefield, M.R.; Fang, Y. The Paradoxical Role of IL-10 in Immunity and Cancer. Cancer Lett. 2015, 367, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Yoshimura, T.; Ohara, T.; Fujisawa, M.; Tong, G.; Matsukawa, A. PolyI:C Suppresses TGF-Β1-Induced Akt Phosphorylation and Reduces the Motility of A549 Lung Carcinoma Cells. Mol. Biol. Rep. 2021, 48, 6313–6321. [Google Scholar] [CrossRef] [PubMed]
- Maskarinec, G.; Morimoto, Y.; Laguana, M.B.; Novotny, R.; Guerrero, R.T.L. Bioimpedence to Assess Breast Density as a Risk Factor for Breast Cancer in Adult Women and Adolescent Girls. Asian Pac. J. Cancer Prev. 2016, 17, 65–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Corrales, A.L.; González-Díaz, C.A.; Calzada-Mendoza, C.C.; Arrieta-Valencia, J.; Sánchez-Mendoza, M.E.; Amaya-Espinoza, J.L.; Gutiérrez-Iglesias, G. Bioimpedance Spectra Confirm Breast Cancer Cell Secretome Induces Early Changes in the Cytoskeleton and Migration of Mesenchymal Stem Cells. Appl. Sci. 2025, 15, 358. https://doi.org/10.3390/app15010358
Sánchez-Corrales AL, González-Díaz CA, Calzada-Mendoza CC, Arrieta-Valencia J, Sánchez-Mendoza ME, Amaya-Espinoza JL, Gutiérrez-Iglesias G. Bioimpedance Spectra Confirm Breast Cancer Cell Secretome Induces Early Changes in the Cytoskeleton and Migration of Mesenchymal Stem Cells. Applied Sciences. 2025; 15(1):358. https://doi.org/10.3390/app15010358
Chicago/Turabian StyleSánchez-Corrales, Ana Laura, César Antonio González-Díaz, Claudia Camelia Calzada-Mendoza, Jesús Arrieta-Valencia, María Elena Sánchez-Mendoza, Juan Luis Amaya-Espinoza, and Gisela Gutiérrez-Iglesias. 2025. "Bioimpedance Spectra Confirm Breast Cancer Cell Secretome Induces Early Changes in the Cytoskeleton and Migration of Mesenchymal Stem Cells" Applied Sciences 15, no. 1: 358. https://doi.org/10.3390/app15010358
APA StyleSánchez-Corrales, A. L., González-Díaz, C. A., Calzada-Mendoza, C. C., Arrieta-Valencia, J., Sánchez-Mendoza, M. E., Amaya-Espinoza, J. L., & Gutiérrez-Iglesias, G. (2025). Bioimpedance Spectra Confirm Breast Cancer Cell Secretome Induces Early Changes in the Cytoskeleton and Migration of Mesenchymal Stem Cells. Applied Sciences, 15(1), 358. https://doi.org/10.3390/app15010358