Use of Hydroxyapatite Nanoparticles to Reduce Cd Contamination in Agricultural Soils: Effects on Growth and Development of Chenopodium quinoa Willd
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Soil Characterization
2.3. Plant Selection
2.4. Nanoparticles
2.5. Soil Treatments with Cd and/or Nanoparticles
2.6. Phytotoxicity Assays
- GIndex: values between 90 and 110% are classified as non-toxic to the species under Cd exposure.
- GIndex: values < 90% are classified as having an inhibitory effect.
- GIndex: values > 110% are classified as having a stimulatory effect.
- ApIndex: values between 90 and 110% are classified as non-toxic to the species for shoot growth under Cd exposure.
- ApIndex: values < 90% are classified as having an inhibitory effect on shoot growth.
- ApIndex: values > 110% are classified as having a stimulatory effect on shoot growth.
2.7. Pot Experiments
2.8. Sequential Chemical Extraction
- F1 (water-soluble and exchangeable): 0.001 M KNO3 for 24 h at room temperature.
- F2 (exchangeable): 1 M NH4OAc at soil pH for 2 h at room temperature.
- F3 (specifically adsorbed): 1 M NH4OAc at pH 5 for 2 h at room temperature.
- F4 (oxide-bound): 0.04 M NH2OH·HCl in 25% HAc for 6 h at 80 °C.
- F5 (organic matter-bound): 30% H2O2 at pH 2 for 5.5 h at 80 °C, followed by 3.2 M NH4OAc in 20% HNO3 for 0.5 h at room temperature.
- F6 (irreversibly adsorbed): 7 M HNO3 for 6 h at 80 °C.
- F7 (residual): the remaining solid fraction after previous extractions.
- F1 and F2: physical sorption (reversible).
- F3: electrostatic adsorption (exchangeable).
- F4, F5, F6: chemisorption (irreversible).
- F7: residual Cd.
2.9. Statistical Analysis
3. Results and Discussion
3.1. Soil Analysis
3.2. Assessment of Cd Distribution in Different Soil Fractions
3.3. Phytotoxicity Assays
3.4. Pot Assays
3.5. Results of Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Healthy Soils Are the Basis for Healthy Food Production|FAO. Available online: https://www.fao.org/soils-2015/news/news-detail/en/c/277682/ (accessed on 27 December 2024).
- Frouz, J. Effects of Soil Macro- and Mesofauna on Litter Decomposition and Soil Organic Matter Stabilization. Geoderma 2018, 332, 161–172. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging Contaminants: A One Health Perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Ye, Q.; Shi, Z. Stable Isotopic Signature of Cadmium in Tracing the Source, Fate, and Translocation of Cadmium in Soil: A Review. J. Hazard. Mater. 2024, 472, 134531. [Google Scholar] [CrossRef] [PubMed]
- Rahim, H.U.; Akbar, W.A.; Alatalo, J.M. A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy 2022, 12, 877. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–520. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Hu, H.; Shaheen, S.M.; Zhong, H.; Tack, F.M.G.; Wu, M.; Li, Y.F.; Gao, Y.; Rinklebe, J.; et al. Speciation, Transportation, and Pathways of Cadmium in Soil-Rice Systems: A Review on the Environmental Implications and Remediation Approaches for Food Safety. Environ. Int. 2021, 156, 106749. [Google Scholar] [CrossRef]
- El Rasafi, T.; Oukarroum, A.; Haddioui, A.; Song, H.; Kwon, E.E.; Bolan, N.; Tack, F.M.G.; Sebastian, A.; Prasad, M.N.V.; Rinklebe, J. Cadmium Stress in Plants: A Critical Review of the Effects, Mechanisms, and Tolerance Strategies. Crit. Rev. Environ. Sci. Technol. 2022, 52, 675–726. [Google Scholar] [CrossRef]
- Tavakoli Pirzaman, A.; Ebrahimi, P.; Niknezhad, S.; Vahidi, T.; Hosseinzadeh, D.; Akrami, S.; Ashrafi, A.M.; Moeen Velayatimehr, M.; Hosseinzadeh, R.; Kazemi, S. Toxic Mechanisms of Cadmium and Exposure as a Risk Factor for Oral and Gastrointestinal Carcinomas. Hum. Exp. Toxicol. 2023, 42. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Kido, T. Causes of Death in Patients with Itai-Itai Disease Suffering from Severe Chronic Cadmium Poisoning: A Nested Case-Control Analysis of a Follow-up Study in Japan. BMJ Open 2017, 7, e015694. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food and Agriculture Organization of the United Station. In Pollution: A reality; FAO: Roma, Italy, 2018. [Google Scholar]
- Vaverková, M.D.; Maxianová, A.; Winkler, J.; Adamcová, D.; Podlasek, A. Environmental Consequences and the Role of Illegal Waste Dumps and Their Impact on Land Degradation. Land Use Policy 2019, 89, 104234. [Google Scholar] [CrossRef]
- González-Feijoo, R.; Rodríguez-Seijo, A.; Fernández-Calviño, D.; Arias-Estévez, M.; Arenas-Lago, D. Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L. Plants 2023, 12, 801. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, W.; Li, Y.; Lv, W. Remediation Effects of Different Concentration of Nano-Hydroxyapatite Level on Pb-Contaminated Soil. J. Geosci. Environ. Prot. 2022, 10, 96–108. [Google Scholar] [CrossRef]
- Ding, L.; Li, J.; Liu, W.; Zuo, Q.; Liang, S.X. Influence of Nano-Hydroxyapatite on the Metal Bioavailability, Plant Metal Accumulation and Root Exudates of Ryegrass for Phytoremediation in Lead-Polluted Soil. Int. J. Environ. Res. Public Health 2017, 14, 532. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, Z.; Zheng, L.; Cheng, W.; Tsang, P.E.; Fang, J.; Zhao, D. Remediation of Lead Contaminated Soil by Biochar-Supported Nano-Hydroxyapatite. Ecotoxicol. Environ. Saf. 2016, 132, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ren, S.; Zuo, Q.; Wang, S.; Zhou, Y.; Liu, W.; Liang, S. Effect of Nanohydroxyapatite on Cadmium Leaching and Environmental Risks under Simulated Acid Rain. Sci. Total Environ. 2018, 627, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Lago-Vila, M.; Rodríguez-Seijo, A.; Vega, F.A.; Arenas-Lago, D. Phytotoxicity Assays with Hydroxyapatite Nanoparticles Lead the Way to Recover Firing Range Soils. Sci. Total Environ. 2019, 690, 1151–1161. [Google Scholar] [CrossRef]
- Li, G.; Yan, L.; Chen, X.; Lam, S.S.; Rinklebe, J.; Yu, Q.; Yang, Y.; Peng, W.; Sonne, C. Phytoremediation of Cadmium from Soil, Air and Water. Chemosphere 2023, 320, 138058. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, B.; Lu, Y.; Lu, F.; Wu, X.; You, W.; Huang, B. Bioavailability of Cadmium to Celery (Apium graveolens L.) Grown in Acidic and Cd-Contaminated Greenhouse Soil as Affected by the Application of Hydroxyapatite with Different Particle Sizes. Chemosphere 2020, 240, 124916. [Google Scholar] [CrossRef]
- Zhang, W.H.; Sun, R.B.; Xu, L.; Liang, J.N.; Wu, T.Y.; Zhou, J. Effects of Micro-/Nano-Hydroxyapatite and Phytoremediation on Fungal Community Structure in Copper Contaminated Soil. Ecotoxicol. Environ. Saf. 2019, 174, 100–109. [Google Scholar] [CrossRef]
- Haseeb, M.; Iqbal, S.; Hafeez, M.B.; Baloch, H.; Zahra, N.; Mumtaz, M.; Ahmad, G.; Fatima, E.M.; Jahanzaib; Raza, S.; et al. Characterizing of Heavy Metal Accumulation, Translocation and Yield Response Traits of Chenopodium Quinoa. J. Agric. Food Res. 2023, 14, 100741. [Google Scholar] [CrossRef]
- Chavan, S.M.; Khadatkar, A.; Hasan, M.; Ahmad, D.; Kumar, V.; Jain, N.K. Quinoa (Chenopodium quinoa Willd.): Paving the Way towards Nutraceuticals and Value-Added Products for Sustainable Development and Nutritional Security. Appl. Food Res. 2024, 5, 100673. [Google Scholar] [CrossRef]
- Dehghanian, Z.; Ahmadabadi, M.; Asgari Lajayer, B.; Gougerdchi, V.; Hamedpour-Darabi, M.; Bagheri, N.; Sharma, R.; Vetukuri, R.R.; Astatkie, T.; Dell, B. Quinoa: A Promising Crop for Resolving the Bottleneck of Cultivation in Soils Affected by Multiple Environmental Abiotic Stresses. Plants 2024, 13, 2117. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, F.F.; Bazile, D.; Bhargava, A.; Martínez, E.A. Implications of Farmers’ Seed Exchanges for on-Farm Conservation of Quinoa, as Revealed by Its Genetic Diversity in Chile. J. Agric. Sci. 2012, 150, 702–716. [Google Scholar] [CrossRef]
- Amjad, M.; Iqbal, M.M.; Abbas, G.; Farooq, A.B.U.; Naeem, M.A.; Imran, M.; Murtaza, B.; Nadeem, M.; Jacobsen, S.E. Assessment of Cadmium and Lead Tolerance Potential of Quinoa (Chenopodium quinoa Willd) and Its Implications for Phytoremediation and Human Health. Environ. Geochem. Health 2022, 44, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer: Berlin, Heidelberg, Germany, 2006; pp. 1–993. [Google Scholar] [CrossRef]
- ISO SIST ISO 10694:1996; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion. International Organization for Standardization: Geneva, Switzerland, 1996. Available online: https://standards.iteh.ai/catalog/standards/sist/9ad3f640-38ee-4bcf-a331-02d4294fa470/sist-iso-10694-1996 (accessed on 27 December 2024).
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Element, C.A.S. EPA Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Z. Für Anal. Chem. 2007, 111, 362–366. [Google Scholar]
- Forján, R.; Arias-Estévez, M.; Gallego, J.L.R.; Santos, E.; Arenas-Lago, D. Biochar-Nanoparticle Combinations Enhance the Biogeochemical Recovery of a Post-Mining Soil. Sci. Total Environ. 2024, 930, 172451. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.; Calvo de Anta, R. Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza En Los Suelos de Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2009. [Google Scholar]
- Phytotoxkit Seed Germination and Early Growth Microbiotest with Higher Plants; Standard Operational Procedure; MicroBioTest Inc.: Gent, Belgium, 2004; p. 24.
- Agnieszka, B.; Tomasz, C.; Jerzy, W. Chemical Properties and Toxicity of Soils Contaminated by Mining Activity. Ecotoxicology 2014, 23, 1234–1244. [Google Scholar] [CrossRef]
- Almås, Å.R.; Salbu, B.; Singh, B.R. Changes in Partitioning of Cadmium-109 and Zinc-65 in Soil as Affected by Organic Matter Addition and Temperature. Soil Sci. Soc. Am. J. 2000, 64, 1951–1958. [Google Scholar] [CrossRef]
- Salbu, B.; Krekling, T.; Oughton, D.H. Characterisation of Radioactive Particles in the Environment. Analyst 1998, 123, 843–849. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Wang, P.; Shen, X.; Qiu, S.; Zhang, L.; Ma, Y.; Liang, J. Clay-Based Materials for Heavy Metals Adsorption: Mechanisms, Advancements, and Future Prospects in Environmental Remediation. Crystals 2024, 14, 1046. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Vega, F.A.; Silva, L.F.O.; Andrade, M.L. Soil Interaction and Fractionation of Added Cadmium in Some Galician Soils. Microchem. J. 2013, 110, 681–690. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS Topsoil Chemical Properties at European Scale Using Gaussian Process Regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.A.; Covelo, E.F.; Andrade, M.L. A Versatile Parameter for Comparing the Capacities of Soils for Sorption and Retention of Heavy Metals Dumped Individually or Together: Results for Cadmium, Copper and Lead in Twenty Soil Horizons. J. Colloid Interface Sci. 2008, 327, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of Heavy Metals in Soils and Their Immobilization at Micro-Scale Interfaces among Diverse Soil Components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Corami, A.; Mignardi, S.; Ferrini, V. Copper and Zinc Decontamination from Single- and Binary-Metal Solutions Using Hydroxyapatite. J. Hazard. Mater. 2007, 146, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Lwin, C.S.; Kim, Y.N.; Lee, M.; Kim, K.R. Coexistence of Cr and Ni in Anthropogenic Soils and Their Chemistry: Implication to Proper Management and Remediation. Environ. Sci. Pollut. Res. 2022, 29, 62807–62821. [Google Scholar] [CrossRef]
- El-Nagar, D.A.; Abdel-Halim, K.Y. Remediation of Heavy Metals in Contaminated Soil by Using Nano-Bentonite, Nano-Hydroxyapatite, and Nano-Composite. Land Degrad. Dev. 2021, 32, 4562–4573. [Google Scholar] [CrossRef]
- Han, L.; Zhao, Z.; Li, J.; Ma, X.; Zheng, X.; Yue, H.; Sun, G.; Lin, Z.; Guan, S. Application of Humic Acid and Hydroxyapatite in Cd-Contaminated Alkaline Maize Cropland: A Field Trial. Sci. Total Environ. 2023, 859, 160315. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Yin, J.; Qi, L.; Feng, Y. Combined Amendments of Nano-Hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.) System. Bull. Environ. Contam. Toxicol. 2018, 100, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Xu, X.; Huang, Y.; Zhu, X.; Chen, X. The Sorption of Lead and Cadmium by Hydroxyapatite-Biochar Nanocomposite from Aqueous Solution. Int. J. Environ. Res. 2025, 19, 37. [Google Scholar] [CrossRef]
- Noruzi, M.; Hadian, P.; Soleimanpour, L.; Ma’mani, L.; Shahbazi, K. Hydroxyapatite Nanoparticles: An Alternative to Conventional Phosphorus Fertilizers in Acidic Culture Media. Chem. Biol. Technol. Agric. 2023, 10, 71. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Riaz, M.; Adrees, M.; Hussain, A.; Zahir, Z.A.; Rinklebe, J. Effects of Nanoparticles on Trace Element Uptake and Toxicity in Plants: A Review. Ecotoxicol. Environ. Saf. 2021, 221, 112437. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Ding, C.; Zhou, Z.; Huang, G.; Wang, X. Effects of Combined Amendments on Crop Yield and Cadmium Uptake in Two Cadmium Contaminated Soils under Rice-Wheat Rotation. Ecotoxicol. Environ. Saf. 2018, 148, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Proshad, R.; Li, J.; Sun, G.; Zheng, X.; Yue, H.; Chen, G.; Zhang, S.; Li, Z.; Zhao, Z. Field Application of Hydroxyapatite and Humic Acid for Remediation of Metal-Contaminated Alkaline Soil. Environ. Sci. Pollut. Res. 2024, 31, 13155–13174. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Duan, R.; Liang, X.; Liu, H.; Qin, S.; Wang, L.; Fu, H.; Zhao, P.; Li, C. Zinc Oxide Nanoparticles and Nano-Hydroxyapatite Enhanced Cd Immobilization, Activated Antioxidant Activity, Improved Wheat Growth, and Minimized Dietary Health Risks in Soil-Wheat System. J. Environ. Chem. Eng. 2024, 12, 113574. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Azeem, M.; Guo, Z.; Li, R.; Li, Y.; Peng, Y.; Ali, E.F.; Wang, H.; Wang, S.; et al. Hydroxyapatite Tailored Hierarchical Porous Biochar Composite Immobilized Cd(II) and Pb(II) and Mitigated Their Hazardous Effects in Contaminated Water and Soil. J. Hazard. Mater. 2022, 437, 129330. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Jiang, X.; Tong, J.; Wang, J.; Shi, J. Effects of Fe3O4 Nanoparticles and Nano Hydroxyapatite on Pb and Cd Stressed Rice (Oryza sativa L.) Seedling. Chemosphere 2023, 329, 138686. [Google Scholar] [CrossRef] [PubMed]
- Mudiyanselage, T.D.; Franks, A.; Xu, J. Chemical and Biological Immobilization Mechanisms of Potentially Toxic Elements in Biochar-Amended Soils. Crit. Rev. Environ. Sci. Technol. 2020, 50, 903–978. [Google Scholar]
- Maghsoodi, M.R.; Ghodszad, L.; Asgari Lajayer, B. Dilemma of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer: Potentials, Challenges and Effects on Plants. Environ. Technol. Innov. 2020, 19, 100869. [Google Scholar] [CrossRef]
Cd Concentration Added | Nanoparticles |
---|---|
0 mg kg−1 | Without nanoparticles |
0 mg kg−1 | 1% HANPs |
5 mg kg−1 | Without nanoparticles |
5 mg kg−1 | 1% HANPs |
10 mg kg−1 | Without nanoparticles |
10 mg kg−1 | 1% HANPs |
25 mg kg−1 | Without nanoparticles |
25 mg kg−1 | 1% HANPs |
50 mg kg−1 | Without nanoparticles |
50 mg kg−1 | 1% HANPs |
Characteristic | Unit | Value | Element | Units | Concentration |
---|---|---|---|---|---|
pH(H2O) | - | 5.75 ± 0.10 | Al | g kg−1 | 57.71 ± 8.69 |
pH(KCl) | - | 4.85 ± 0.10 | As | mg kg−1 | 14.58 ± 1.18 |
Organic Matter | % | 2.01 ± 0.35 | Ca | g kg−1 | 1.76 ± 0.05 |
N | % | 0.13 ± 0.01 | |||
P | mg kg−1 | 28.60 ± 1.04 | |||
Texture | - | sandy-loam | Cd | mg kg−1 | nd |
Co | mg kg−1 | 17.92 ± 0.38 | |||
Ca2+ | cmol(+)kg−1 | 1.69 ± 0.34 | Cr | mg kg−1 | 68.75 ± 2.18 |
K+ | 18.11 ± 4.84 | Cu | mg kg−1 | 77.92 ± 1.84 | |
Mg2+ | 0.50 ± 0.10 | Fe | g kg−1 | 48.81 ± 3.08 | |
Na+ | 1.50 ± 0.69 | K | g kg−1 | 10.94 ± 1.07 | |
Al3+ | 31.11 ± 1.97 | Mg | g kg−1 | 10.88 ± 0.77 | |
ECEC | 52.92 ± 7.94 | Mn | g kg−1 | 0.43 ± 0.02 | |
Na | mg kg−1 | 135.83 ± 3.54 | |||
Fe oxides | g kg−1 | 35.08 ± 4.17 | Ni | mg kg−1 | 31.92 ± 1.26 |
Al oxides | 5.83 ± 0.70 | Pb | mg kg−1 | 9.50 ± 1.32 | |
Mn oxides | 0.15 ± 0.02 | Zn | mg kg−1 | 107.67 ± 2.45 |
Soil + HANPs | Cd | F1 | F2 | F3 | F1 + F2 + F3 |
---|---|---|---|---|---|
- | 0 | nd | nd | nd | nd |
1% | 0 | nd | nd | nd | nd |
- | 5 | nd | 1.04 ± 0.3 e | 0.79 ± 0.34 d | 1.83 ± 0.64 d (36.60%) |
1% | 5 | nd | 1.41 ± 0.26 d | 0.50 ± 0.24 d | 1.91 ± 0.50 d (38.20%) |
- | 10 | 0.11 ± 0.03 c | 3.49 ± 1.28 c | 2.45 ± 0.85 c | 6.05 ± 2.16 c (60.50%) |
1% | 10 | 0.04 ± 0.02 d | 3.73 ± 0.02 c | 2.13 ± 0.49 c | 3.77 ± 0.53 c (37.70%) |
- | 25 | 0.28 ± 0.07 b | 8.72 ± 3.2 b | 6.11 ± 2.13 b | 15.11 ± 5.40 b (60.44%) |
1% | 25 | 0.11 ± 0.04 c | 9.31 ± 1.23 ab | 5.33 ± 0.39 b | 14.75 ± 1.66 b (59.00%) |
- | 50 | 0.73 ± 0.54 a | 13.56 ± 3.84 a | 11.3 ± 1.65 a | 25.59 ± 6.03 a (51.18%) |
1% | 50 | 0.61 ± 0.11 a | 14.77 ± 2.8 a | 11.03 ± 0.84 a | 26.41 ± 3.75 a (51.82%) |
Soil + HANPs | Cd | F4 | F5 | F6 | % Recovery |
- | 0 | nd | nd | nd | - |
1% | 0 | nd | nd | nd | - |
- | 5 | 1.12 ± 0.18 d | 0.13 ± 0.03 d | 0.66 ± 0.0.8 d | 74.80 |
1% | 5 | 0.82 ± 0.25 d | nd | 1.14 ± 0.21 d | 77.30 |
- | 10 | 1.87 ± 0.63 c | 0.79 ± 0.32 c | 0.57 ± 0.13 e | 92.80 |
1% | 10 | 1.36 ± 0.16 c | nd | 2.44 ± 0.62 c | 75.65 |
- | 25 | 4.68 ± 1.57 a | 1.97 ± 0.81 b | 1.43 ± 0.43 d | 92.76 |
1% | 25 | 3.40 ± 0.26 b | nd | 3.42 ± 0.76 c | 86.28 |
- | 50 | 7.80 ± 1.33 a | 4.38 ± 0.78 a | 5.86 ± 1.05 b | 87.25 |
1% | 50 | 5.58 ± 0.55 a | 0.08 ± 0.03 d | 8.96 ± 0.79 a | 82.05 |
Soil + HANPs | Cd (mg kg−1) | G (%) | Shoot Length (cm) | ApIndex (%) | Root Length (cm) | GIndex (%) |
---|---|---|---|---|---|---|
- | 0 | 83 ± 15 a | 4.28 ± 0.12 a | 100 ± 17 a | 2.85 ± 0.75 a | 100 ± 31 a |
1% | 0 | 80 ± 17 a | 5.06 ± 0.93 a | 112 ± 22 a | 2.87 ± 0.80 a | 93 ± 13 a |
- | 5 | 80 ± 10 a | 4.83 ± 1.26 ab | 106 ± 21 a | 3.35 ± 0.59 a | 111 ± 11 a |
1% | 5 | 77 ± 12 a | 4.45 ± 0.99 ab | 97 ± 32 ab | 2.58 ± 0.53 ab | 85 ± 30 a |
- | 10 | 73 ± 15 a | 4.11 ± 0.18 b | 84 ± 14 b | 2.08 ± 0.36 b | 64 ± 16 b |
1% | 10 | 83 ± 6 a | 5.03 ± 0.78 a | 119 ± 20 a | 2.11 ± 0.79 ab | 74 ± 25 ab |
- | 25 | 77 ± 6 a | 4.15 ± 0.08 b | 87 ± 7 b | 2.14 ± 0.95 ab | 70 ± 34 ab |
1% | 25 | 87 ± 15 a | 4.84 ± 0.74 a | 119 ± 25 a | 2.55 ± 0.21 a | 94 ± 22 a |
- | 50 | 77 ± 15 a | 3.28 ± 0.22 c | 70 ± 10 b | 2.06 ± 0.43 b | 67 ± 32 b |
1% | 50 | 90 ± 10 a | 3.16 ± 0.85 bc | 78 ± 16 b | 2.08 ± 0.77 ab | 77 ± 25 ab |
Soil + HANPs | Cd (mg kg−1) | Germination (%) | Fb (g) | Db (g) | h (cm) |
---|---|---|---|---|---|
- | 0 | 92 ± 8 a | 16.4 ± 0.5 a | 1.6 ± 0.4 a | 48.9 ± 8.2 a |
1% | 0 | 95 ± 3 a | 15.3 ± 1.2 a | 2.4 ± 0.4 a | 48.3 ± 2.5 a |
- | 5 | 95 ± 5 a | 12.5 ± 2.5 b | 1.1 ± 0.6 b | 39.2 ± 13.2 ab |
1% | 5 | 95 ± 2 a | 14.0 ± 2.4 ab | 2.0 ± 0.5 b | 47.0 ± 1.3 a |
- | 10 | 75 ± 14 b | 10.4 ± 2.8 bc | 1.1 ± 0.4 bc | 33.5 ± 7.1 bc |
1% | 10 | 75 ± 12 b | 12.9 ± 2.4 b | 0.9 ± 0.3 c | 47.3 ± 4.2 a |
- | 25 | 58 ± 10 bc | 6.0 ± 2.9 c | 0.6 ± 0.1 cd | 26.5 ± 4.7 bc |
1% | 25 | 55 ± 9 c | 7.2 ± 2.0 c | 0.8 ± 0.2 cd | 33.1 ± 9.1 bc |
- | 50 | 42 ± 16 d | 7.0 ± 0.8 c | 0.7 ±0.3 cd | 25.1 ± 3.8 c |
1% | 50 | 60 ± 4 c | 3.1 ± 1.4 d | 0.5 ± 0.2 d | 20.1 ± 4.7 c |
Soil + HANPs | Cd (mg kg−1) | La (cm2) | N° leaves | Root-Cd (mg kg−1) | A.p.-Cd (mg kg−1) |
- | 0 | 11.3 ± 2.6 a | 31 ± 5 b | nd | nd |
1% | 0 | 8.0 ± 2.2 ab | 37 ± 3 a | nd | nd |
- | 5 | 6.6 ± 4.3 ab | 39 ± 4 ab | nd | 55.1 ± 17.0 c |
1% | 5 | 7.8 ± 5.1 ab | 42 ± 3 a | nd | 16.4 ± 3.6 d |
- | 10 | 8.5 ± 3.6 ab | 30 ± 2 b | nd | 89.5 ± 36.3 bc |
1% | 10 | 6.4 ± 5.0 ab | 31 ± 5 b | nd | 27.6 ± 8.8 d |
- | 25 | 5.4 ± 2.1 b | 24 ± 1 d | nd | 153.8 ± 45.2 ab |
1% | 25 | 5.8 ± 4.0 ab | 35 ± 3 b | nd | 56.0 ± 3.1 c |
- | 50 | 4.8 ± 3.2 b | 28 ± 2 c | nd | 215.7 ± 43.3 a |
1% | 50 | 3.7 ± 3.0 b | 26 ± 2 c | nd | 91.9 ± 10.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Feijoo, R.; Martínez-Castillo, C.; Santás-Miguel, V.; Arenas-Lago, D.; Pérez-Rodríguez, P. Use of Hydroxyapatite Nanoparticles to Reduce Cd Contamination in Agricultural Soils: Effects on Growth and Development of Chenopodium quinoa Willd. Appl. Sci. 2025, 15, 639. https://doi.org/10.3390/app15020639
González-Feijoo R, Martínez-Castillo C, Santás-Miguel V, Arenas-Lago D, Pérez-Rodríguez P. Use of Hydroxyapatite Nanoparticles to Reduce Cd Contamination in Agricultural Soils: Effects on Growth and Development of Chenopodium quinoa Willd. Applied Sciences. 2025; 15(2):639. https://doi.org/10.3390/app15020639
Chicago/Turabian StyleGonzález-Feijoo, Rocío, Cecilia Martínez-Castillo, Vanesa Santás-Miguel, Daniel Arenas-Lago, and Paula Pérez-Rodríguez. 2025. "Use of Hydroxyapatite Nanoparticles to Reduce Cd Contamination in Agricultural Soils: Effects on Growth and Development of Chenopodium quinoa Willd" Applied Sciences 15, no. 2: 639. https://doi.org/10.3390/app15020639
APA StyleGonzález-Feijoo, R., Martínez-Castillo, C., Santás-Miguel, V., Arenas-Lago, D., & Pérez-Rodríguez, P. (2025). Use of Hydroxyapatite Nanoparticles to Reduce Cd Contamination in Agricultural Soils: Effects on Growth and Development of Chenopodium quinoa Willd. Applied Sciences, 15(2), 639. https://doi.org/10.3390/app15020639