Physicochemical and Sensory Evaluation of Gummy Candies Fortified with Microcapsules of Guinea Pig (Cavia porcellus) Blood Erythrocytes and Tumbo (Passiflora tarminiana) Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microencapsulation of Guinea Pig Blood Erythrocytes by Vacuum Drying
2.3. Formulation and Processing of Enriched Gummies
2.4. Iron Content
2.5. Particle Size
2.6. Analysis by Scanning Electron Microscopy (SEM)
2.7. Proximate Analysis
2.8. Color Analysis
2.9. pH
2.10. Soluble Solids
2.11. Analysis by Fourier Transform Infrared Spectrophotometry (FTIR)
2.12. Sensory Evaluation
- An acceptability test which used a four-point hedonic scale (Poor = 1, Fair = 2, Good = 3, Excellent = 4) to evaluate color, aroma, taste, and texture.
- A preference test in which participants selected their preferred sample from the coded options.
2.13. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Microcapsules
3.2. Physicochemical and Sensorial Characterization of Gummy Candies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public. Health 2022, 19, 1227. [Google Scholar] [CrossRef] [PubMed]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Ahmad, A.; Khalid, N.; David, A.; Sandhu, M.A.; Randhawa, M.A.; Suleria, H.A.R. A Question Mark on Iron Deficiency in 185 Million People of Pakistan: Its Outcomes and Prevention. Crit. Rev. Food Sci. Nutr. 2014, 54, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Ligarda-Samanez, C.A.; Moscoso-Moscoso, E.; Choque-Quispe, D.; Palomino-Rincón, H.; Martínez-Huamán, E.L.; Huamán-Carrión, M.L.; Peralta-Guevara, D.E.; Aroni-Huamán, J.; Arévalo-Quijano, J.C.; Palomino-Rincón, W.; et al. Microencapsulation of Erythrocytes Extracted from Cavia porcellus Blood in Matrices of Tara Gum and Native Potato Starch. Foods 2022, 11, 2107. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Moscoso-Moscoso, E.; Choque-Quispe, D.; Ramos-Pacheco, B.S.; Arévalo-Quijano, J.C.; Cruz, G.D.; Huamán-Carrión, M.L.; Quispe-Quezada, U.R.; Gutiérrez-Gómez, E.; Cabel-Moscoso, D.J.; et al. Native Potato Starch and Tara Gum as Polymeric Matrices to Obtain Iron-Loaded Microcapsules from Ovine and Bovine Erythrocytes. Polymers 2023, 15, 3985. [Google Scholar] [CrossRef]
- Campos, D.; Chirinos, R.; Gálvez Ranilla, L.; Pedreschi, R. Chapter Eight—Bioactive Potential of Andean Fruits, Seeds, and Tubers. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 84, pp. 287–343. [Google Scholar]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Kumar, Y.; Malav, O.P.; Sazili, A.Q.; Domínguez, R.; Lorenzo, J.M. Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Appl. Sci. 2022, 12, 1424. [Google Scholar] [CrossRef]
- Samborska, K.; Poozesh, S.; Barańska, A.; Sobulska, M.; Jedlińska, A.; Arpagaus, C.; Malekjani, N.; Jafari, S.M. Innovations in spray drying process for food and pharma industries. J. Food Eng. 2022, 321, 110960. [Google Scholar] [CrossRef]
- Michel, M.R.; de los Ángeles Vázquez-Núñez, M.; Aguilar-Zárate, M.; Wong-Paz, J.E.; Aguilar-Zárate, P. Microencapsulation of Bioactive Compounds from Agro-industrial Waste. In Food Waste Conversion; Aguilar Gonzalez, C.N., Gómez-García, R., Kuddus, M., Eds.; Springer: New York, NY, USA, 2023; pp. 55–65. [Google Scholar]
- Rossi, Y.E.; Vanden Braber, N.L.; Díaz Vergara, L.I.; Montenegro, M.A. Bioactive Ingredients Obtained from Agro-industrial Byproducts: Recent Advances and Innovation in Micro- and Nanoencapsulation. J. Agric. Food Chem. 2021, 69, 15066–15075. [Google Scholar] [CrossRef]
- Pant, K.; Thakur, M.; Chopra, H.K.; Nanda, V. Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. LWT 2022, 155, 112956. [Google Scholar] [CrossRef]
- Herrera, E.; Petrusan, J.-I.; Salvá-Ruiz, B.; Novak, A.; Cavalcanti, K.; Aguilar, V.; Heinz, V.; Smetana, S. Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source. Sustainability 2022, 14, 1292. [Google Scholar] [CrossRef]
- Churio, O.; Valenzuela, C. Development and characterization of maltodextrin microparticles to encapsulate heme and non-heme iron. LWT 2018, 96, 568–575. [Google Scholar] [CrossRef]
- Rout, R.K.; Sivaranjani, S.; Jayasree, J.T.; Puja, N.; Kumar, A.; Singh, S.M.; Rao, P.S. Encapsulation: Advanced Techniques and Applications. In Structured Foods; CRC Press: Boca Raton, FL, USA, 2024; pp. 13–44. [Google Scholar]
- Halder, T.; Mehta, P.; Acharya, N. Trends in the functional food market and nutraceutical product development. In Nutraceuticals for Aging and Anti-Aging; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–26. [Google Scholar]
- Pereira, D.G.; Benassi, M.D.T.; Beleia, A.D.P. Gummy candies produced with acid-thinned cassava starch: Physical and sensory evaluation. J. Food Process. Preserv. 2022, 46, e16661. [Google Scholar] [CrossRef]
- Renaldi, G.; Junsara, K.; Jannu, T.; Sirinupong, N.; Samakradhamrongthai, R.S. Physicochemical, textural, and sensory qualities of pectin/gelatin gummy jelly incorporated with Garcinia atroviridis and its consumer acceptability. Int. J. Gastron. Food Sci. 2022, 28, 100505. [Google Scholar] [CrossRef]
- Nguyen, T.B.K.; Cao, H.K.N.; Nguyen, T.D.L.H.; Doan, T.P.D.; Phan, T.D.; Le, M.T.; Dong, T.A.D. Improvement of gummy candy structure by gelling ingredients and cooling temperature. Vietnam. J. Chem. 2024. early view. [Google Scholar] [CrossRef]
- Tarahi, M.; Tahmouzi, S.; Kianiani, M.R.; Ezzati, S.; Hedayati, S.; Niakousari, M. Current Innovations in the Development of Functional Gummy Candies. Foods 2024, 13, 76. [Google Scholar] [CrossRef]
- Maryam, S.; Oztop, M.H.; Doğdu, S.; Ali Marangoz, M.; Zeshan, Z.; Qasim Hayat, M.; Riaz, R.; Chattha, M.W.A.; Janjua, H.A. Spirulina and chlorella derived hard candies as functional food. J. Funct. Foods 2024, 123, 106565. [Google Scholar] [CrossRef]
- Gorjanović, S.; Zlatanović, S.; Laličić-Petronijević, J.; Dodevska, M.; Micić, D.; Stevanović, M.; Pastor, F. Enhancing composition and functionality of jelly candies through apple and beetroot pomace flour addition. NPJ Sci. Food 2024, 8, 85. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Abedin, S. Characterization of Prototype Gummy Formulations Provides Insight into Setting Quality Standards. AAPS PharmSciTech 2024, 25, 155. [Google Scholar] [CrossRef]
- Ligarda Samanez, C.A.; Choque-Quispe, D.; Allende Allende, L.F.; Ramos Pacheco, B.S.; Peralta-Guevara, D.E. Calidad sensorial y proximal en conservas de mondongo de res (Bos taurus) en salsa de ají amarillo (Capsicum baccatum). Cienc. Y Tecnol. Agropecu. 2023, 24, 2741. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Palomino-Rincón, H.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Arévalo-Quijano, J.C.; Huamán-Carrión, M.L.; Quispe-Quezada, U.R.; Muñoz-Saenz, J.C.; Gutiérrez-Gómez, E.; Cabel-Moscoso, D.J.; et al. Bioactive Compounds and Sensory Quality in Chips of Native Potato Clones (Solanum tuberosum spp. andigena) Grown in the High Andean Region of PERU. Foods 2023, 12, 2511. [Google Scholar] [CrossRef]
- Younesi, M.; Peighambardoust, S.H.; Sarabandi, K.; Akbarmehr, A.; Ahaninjan, M.; Soltanzadeh, M. Application of structurally modified WPC in combination with maltodextrin for microencapsulation of Roselle (Hibiscus sabdariffa) extract as a natural colorant source for gummy candy. Int. J. Biol. Macromol. 2023, 242, 124903. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants. Drugs; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Moscoso-Moscoso, E.; Ligarda-Samanez, C.A.; Choque-Quispe, D.; Huamán-Carrión, M.L.; Arévalo-Quijano, J.C.; De la Cruz, G.; Luciano-Alipio, R.; Calsina Ponce, W.C.; Sucari-León, R.; Quispe-Quezada, U.R.; et al. Preliminary Assessment of Tara Gum as a Wall Material: Physicochemical, Structural, Thermal, and Rheological Analyses of Different Drying Methods. Polymers 2024, 16, 838. [Google Scholar] [CrossRef] [PubMed]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Ramos-Pacheco, B.S.; Yanahuillca-Vargas, A.; Huamán-Carrión, M.L.; Moscoso-Moscoso, E.; Palomino-Rincón, H. Taxonomic, physicochemical, phenolic and antioxidant comparison in species of high Andean wild fruits: Rubus and Hesperomeles. Acta Agronómica 2023, 72, 30–37. [Google Scholar] [CrossRef]
- Hu, S.; Lin, S.; He, X.; Sun, N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit. Rev. Food Sci. Nutr. 2023, 63, 10197–10216. [Google Scholar] [CrossRef] [PubMed]
- Durán, E.; Villalobos, C.; Churio, O.; Pizarro, F.; Valenzuela, C. Encapsulación de hierro: Otra estrategia para la prevención o tratamiento de la anemia por deficiencia de hierro. Rev. Chil. De. Nutr. 2017, 44, 234–243. [Google Scholar] [CrossRef]
- Li, S.; Mao, X.; Guo, L.; Zhou, Z. Comparative Analysis of the Impact of Three Drying Methods on the Properties of Citrus reticulata Blanco cv. Dahongpao Powder Solid. Drinks. Foods 2023, 12, 2514. [Google Scholar] [CrossRef]
- Kandasamy, S.; Naveen, R. A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process Eng. 2022, 45, e14059. [Google Scholar] [CrossRef]
- Valenzuela, C.; Hernández, V.; Morales, M.S.; Neira-Carrillo, A.; Pizarro, F. Preparation and characterization of heme iron-alginate beads. LWT -Food Sci. Technol. 2014, 59, 1283–1289. [Google Scholar] [CrossRef]
- Alemán, M.; Bou, R.; Polo, J.; Rodríguez, C.; Tres, A.; Codony, R.; Guardiola, F. Co-spray-drying of a heme iron ingredient to decrease its pro-oxidant effect in lipid-containing foods. Eur. J. Lipid Sci. Technol. 2016, 118, 195–207. [Google Scholar] [CrossRef]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Chawla, P.; Arora, S. Development and evaluation of iron microencapsules for milk fortification. CyTA -J. Food 2015, 13, 116–123. [Google Scholar] [CrossRef]
- Moslemi, M.; Hosseini, H.; Erfan, M.; Mortazavian, A.M.; Fard, R.M.N.; Neyestani, T.R.; Komeyli, R. Characterisation of spray-dried microparticles containing iron coated by pectin/resistant starch. Int. J. Food Sci. Technol. 2014, 49, 1736–1742. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Dry. Technol. 2020, 38, 235–258. [Google Scholar] [CrossRef]
- Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. An overview of microencapsulation in the food industry: Opportunities, challenges, and innovations. Eur. Food Res. Technol. 2020, 246, 1371–1382. [Google Scholar] [CrossRef]
- Roudbari, M.; Barzegar, M.; Sahari, M.A.; Gavlighi, H.A. Formulation of functional gummy candies containing natural antioxidants and stevia. Heliyon 2024, 10, e31581. [Google Scholar] [CrossRef]
- Mahat, M.M.; Sabere, A.S.M.; Nawawi, M.A.; Hamzah, H.H.; Jamil, M.A.F.M.; Roslan, N.C.; Halim, M.I.A.; Safian, M.F. The Sensory Evaluation and Mechanical Properties of Functional Gummy in the Malaysian Market. 2020. Available online: https://www.preprints.org/manuscript/202010.0213 (accessed on 3 December 2024).
- Hartel, R.W.; von Elbe, J.H.; Hofberger, R. Jellies, Gummies and Licorices. In Confectionery Science and Technology; Hartel, R.W., von Elbe, J.H., Hofberger, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 329–359. [Google Scholar]
- Gunes, R.; Palabiyik, I.; Konar, N.; Said Toker, O. Soft confectionery products: Quality parameters, interactions with processing and ingredients. Food Chem. 2022, 385, 132735. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Calín-Sánchez, Á.; Clemente-Villalba, J.; Hernández, F.; Carbonell-Barrachina, Á.A.; Sendra, E.; Wojdyło, A. Quality Parameters and Consumer Acceptance of Jelly Candies Based on Pomegranate Juice “Mollar de Elche”. Foods 2020, 9, 516. [Google Scholar] [CrossRef]
- Delgado, P.; Bañón, S. Determining the minimum drying time of gummy confections based on their mechanical properties. CyTA -J. Food 2015, 13, 329–335. [Google Scholar] [CrossRef]
- Vojvodić Cebin, A.; Bunić, M.; Mandura Jarić, A.; Šeremet, D.; Komes, D. Physicochemical and Sensory Stability Evaluation of Gummy Candies Fortified with Mountain Germander Extract and Prebiotics. Polymers 2024, 16, 259. [Google Scholar] [CrossRef]
- Rivero, R.; Archaina, D.; Sosa, N.; Schebor, C. Development and characterization of two gelatin candies with alternative sweeteners and fruit bioactive compounds. LWT 2021, 141, 110894. [Google Scholar] [CrossRef]
- Tireki, S.; Sumnu, G.; Sahin, S. Correlation between physical and sensorial properties of gummy confections with different formulations during storage. J. Food Sci. Technol. 2021, 58, 3397–3408. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Ponce-Alquicira, E. The Role of Microencapsulation in Food Application. Molecules 2022, 27, 1499. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Gómez Castaño, J.A. Microencapsulation of Betaxanthin Pigments from Pitahaya (Hylocereus megalanthus) By-Products: Characterization, Food Application, Stability, and In Vitro Gastrointestinal Digestion. Foods 2023, 12, 2700. [Google Scholar] [CrossRef] [PubMed]
- Szente, L.; Sohajda, T.; Fenyvesi, É. Encapsulation for Masking Off-Flavor and Off-Tasting in Food Production. In Functionality of Cyclodextrins in Encapsulation for Food Applications; Ho, T.M., Yoshii, H., Terao, K., Bhandari, B.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–253. [Google Scholar]
- English, M.; Okagu, O.D.; Stephens, K.; Goertzen, A.; Udenigwe, C.C. Flavour encapsulation: A comparative analysis of relevant techniques, physiochemical characterisation, stability, and food applications. Front. Nutr. 2023, 10, 1019211. [Google Scholar] [CrossRef] [PubMed]
- Premjit, Y.; Pandhi, S.; Kumar, A.; Rai, D.C.; Duary, R.K.; Mahato, D.K. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res. Int. 2022, 151, 110879. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, X.; Zheng, H.; Li, J.; Wu, X.; Xu, J.; Zhen, Z.; Du, C. The application of encapsulation technology in the food Industry: Classifications, recent Advances, and perspectives. Food Chem. X 2024, 21, 101240. [Google Scholar] [CrossRef]
- Zabot, G.L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Lobel, B.T.; Baiocco, D.; Al-Sharabi, M.; Routh, A.F.; Zhang, Z.; Cayre, O.J. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS Appl. Mater. Interfaces 2024, 16, 40326–40355. [Google Scholar] [CrossRef]
- Vítězová, M.; Jančiková, S.; Dordević, D.; Vítěz, T.; Elbl, J.; Hanišáková, N.; Jampílek, J.; Kushkevych, I. The Possibility of Using Spent Coffee Grounds to Improve Wastewater Treatment Due to Respiration Activity of Microorganisms. Appl. Sci. 2019, 9, 3155. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Palomino-Rincón, H.; Ramos-Pacheco, B.S.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Peralta-Guevara, D.E.; Obregón-Yupanqui, M.E.; Aroni-Huamán, J.; Bravo-Franco, E.Y.; et al. Modified Polymeric Biosorbents from Rumex acetosella for the Removal of Heavy Metals in Wastewater. Polymers 2022, 14, 2191. [Google Scholar] [CrossRef] [PubMed]
- Aguirrezabala, J.; Iñigo, A.; Miren, A.; Iciar, A.; Armendáriz, M.; Barrondo, S. Tratamiento de las anemias por déficit de hierro y de vitamina B12. INFAC 2018, 26, 10. [Google Scholar]
- Palma, D.; Yllanes, L.; Morales, J.; Solano, G.; Tarazona, D.; Levano, K.S. Effect of guinea pig blood and Physalis peruviana gummies in the reduction of anemia in children of Huanuco Peru. In Proceedings of the 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON), Lima, Peru, 13–15 November 2019; pp. 1–4. [Google Scholar]
Ingredients | F1 (4% EEGPB) | F2 (5% EEGPB) | F3 (6% EEGPB) |
---|---|---|---|
Tumbo juice (g) | 102 | 100 | 98 |
Neutral gelatin (g) | 20 | 20 | 20 |
Sugar (g) | 20 | 20 | 20 |
Glucose (g) | 31 | 31 | 31 |
Erythrocytes encapsulated (g) | 6.92 | 8.92 | 10.92 |
Total | 179.92 | 179.92 | 179.92 |
Properties | F1 (4% EEGPB) | F2 (5% EEGPB) | F3 (6% EEGPB) | ||||||
---|---|---|---|---|---|---|---|---|---|
± | SD | ± | SD | ± | SD | ||||
Moisture (%) | 52.02 a | ± | 0.27 | 48.45 b | ± | 0.57 | 43.27 c | ± | 0.54 |
Protein (%) | 10.10 a | ± | 0.03 | 10.59 b | ± | 0.10 | 11.44 c | ± | 0.06 |
Fat (%) | 0.05 a | ± | 0.01 | 0.05 a | ± | 0.01 | 0.07 a | ± | 0.01 |
Ash (%) | 0.68 a | ± | 0.02 | 1.58 b | ± | 0.03 | 3.14 c | ± | 0.06 |
Fiber (%) | 0.05 a | ± | 0.01 | 0.06 a | ± | 0.01 | 0.04 a | ± | 0.02 |
Carbohydrates (%) | 37.11 a | ± | 0.35 | 39.28 b | ± | 0.45 | 42.06 c | ± | 0.55 |
Iron content (mg Fe/g) | 1.96 a | ± | 0.01 | 2.47 b | ± | 0.04 | 2.63 c | ± | 0.03 |
L* | 22.47 a | ± | 0.42 | 20.93 b | ± | 0.10 | 19.90 c | ± | 0.14 |
a* | 1.27 a | ± | 0.04 | 1.28 a | ± | 0.07 | 1.30 a | ± | 0.11 |
b* | 0.59 a | ± | 0.08 | 0.42 ab | ± | 0.04 | 0.35 b | ± | 0.10 |
pH | 3.96 a | ± | 0.01 | 3.98 a | ± | 0.01 | 4.01 b | ± | 0.01 |
Soluble solids (°Brix) | 60.00 a | ± | 0.05 | 61.00 b | ± | 0.08 | 62.00 c | ± | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligarda-Samanez, C.A.; Villano-Limache, E.; Pichihua-Oscco, W.; Choque-Quispe, D.; Sucari-León, R.; Calderón Huamaní, D.F.; Cruz, G.D.l.; Luciano-Alipio, R.; Calsina Ponce, W.C.; Aroquipa-Durán, Y.; et al. Physicochemical and Sensory Evaluation of Gummy Candies Fortified with Microcapsules of Guinea Pig (Cavia porcellus) Blood Erythrocytes and Tumbo (Passiflora tarminiana) Juice. Appl. Sci. 2025, 15, 917. https://doi.org/10.3390/app15020917
Ligarda-Samanez CA, Villano-Limache E, Pichihua-Oscco W, Choque-Quispe D, Sucari-León R, Calderón Huamaní DF, Cruz GDl, Luciano-Alipio R, Calsina Ponce WC, Aroquipa-Durán Y, et al. Physicochemical and Sensory Evaluation of Gummy Candies Fortified with Microcapsules of Guinea Pig (Cavia porcellus) Blood Erythrocytes and Tumbo (Passiflora tarminiana) Juice. Applied Sciences. 2025; 15(2):917. https://doi.org/10.3390/app15020917
Chicago/Turabian StyleLigarda-Samanez, Carlos A., Eliana Villano-Limache, Williams Pichihua-Oscco, David Choque-Quispe, Reynaldo Sucari-León, Dante Fermín Calderón Huamaní, Germán De la Cruz, Rober Luciano-Alipio, Wilber Cesar Calsina Ponce, Yolanda Aroquipa-Durán, and et al. 2025. "Physicochemical and Sensory Evaluation of Gummy Candies Fortified with Microcapsules of Guinea Pig (Cavia porcellus) Blood Erythrocytes and Tumbo (Passiflora tarminiana) Juice" Applied Sciences 15, no. 2: 917. https://doi.org/10.3390/app15020917
APA StyleLigarda-Samanez, C. A., Villano-Limache, E., Pichihua-Oscco, W., Choque-Quispe, D., Sucari-León, R., Calderón Huamaní, D. F., Cruz, G. D. l., Luciano-Alipio, R., Calsina Ponce, W. C., Aroquipa-Durán, Y., & Campos-Huamaní, M. J. V. (2025). Physicochemical and Sensory Evaluation of Gummy Candies Fortified with Microcapsules of Guinea Pig (Cavia porcellus) Blood Erythrocytes and Tumbo (Passiflora tarminiana) Juice. Applied Sciences, 15(2), 917. https://doi.org/10.3390/app15020917