Profiling Key Phytoconstituents in Screw-Pressed Nigella Solid Residue and Their Distribution in Products and Byproducts During Oil Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Experimental Materials
2.3. Screw-Pressed Solid Residue
2.4. Preparation of Test Sample
2.5. Experimental Analysis
2.5.1. Total Phenolic Content (TPC) and Antioxidant Capacity
2.5.2. Thymoquinone (TQ) Quantification
2.5.3. Fatty Acid Quantification
2.5.4. Quantification of Phytoconstituents Transfer in Solid Residue from Seed
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC)
3.2. Antioxidant Capacity
3.3. Thymoquinone (TQ) Composition
3.4. Fatty Acid Composition
3.5. Key Phytoconstituents Transfer into Solid Residue from Seeds
3.6. Overall Transfer of Phytoconstituents into Oil and Solid Residue from Seeds
3.7. Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ancuța, P.; Sonia, A. Oil press-cakes and meals valorization through circular economy approaches: A review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Singh, R.; Langyan, S.; Sangwan, S.; Rohtagi, B.; Khandelwal, A.; Shrivastava, M. Protein for human consumption from oilseed cakes: A review. Front. Sustain. Food Syst. 2022, 6, 856401. [Google Scholar] [CrossRef]
- Vasudha, C.; Sarla, L. Nutritional quality analysis of sunflower seed cake (SSC). Pharma Innov. J. 2021, 10, 720–728. [Google Scholar]
- Dessie, A.B.; Abate, T.M.; Adane, B.T.; Tesfa, T.; Getu, S. Estimation of technical efficiency of black cumin (Nigella sativa L.) farming in northwest Ethiopia: A stochastic frontier approach. J. Econ. Struct. 2020, 9, 18. [Google Scholar] [CrossRef]
- El-Morsy, M.H.; Osman, H.E.-S. Morphological characters of Nigella sativa. In Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications; Fawzy Ramadan, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 23–29. [Google Scholar]
- Thakur, S.; Kaurav, H.; Chaudhary, G. Nigella sativa (Kalonji): A black seed of miracle. Int. J. Res. Rev. 2021, 8, 342–357. [Google Scholar] [CrossRef]
- Sharma, P.; Longvah, T. Nigella (Nigella sativa) seed. In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2021; pp. 331–350. [Google Scholar]
- Ramadan, M.F. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar] [CrossRef]
- Piras, A.; Rosa, A.; Marongiu, B.; Porcedda, S.; Falconieri, D.; Dessì, M.A.; Ozcelik, B.; Koca, U. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops Prod. 2013, 46, 317–323. [Google Scholar] [CrossRef]
- Eid, A.M.; Elmarzugi, N.A.; Abu Ayyash, L.M.; Sawafta, M.N.; Daana, H.I. A review on the cosmeceutical and external applications of Nigella sativa. J. Trop. Med. 2017, 2017, 7092514. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- El Malky, W.A.; Kerolles, S.Y. Chemical and biological studies on local and imported Nigella sativa L. seeds and its defatted meal (cake). J. Soil Sci. Agric. Eng. 2000, 25, 4693–4699. [Google Scholar] [CrossRef]
- Khattab, Y. Effect of substituting black seed cake (Nigella sativa L.) for soybean meal in diets of nile tilapia (Oreochromis niloticus L.) on growth performance and nutrients utilization. Egypt. J. Aquat. Biol. Fish. 2001, 5, 31–46. [Google Scholar] [CrossRef]
- Kour, J.; Gani, A. Nigella sativa seed cake: Nutraceutical significance and applications in the food and cosmetic industry. In Black Cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications; Fawzy Ramadan, M., Ed.; Food Bioactive Ingredients; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–229. [Google Scholar]
- Thilakarathne, R.C.N.; Madushanka, G.D.M.P.; Navaratne, S.B. Comparison of physico-chemical properties of Indian and Ethiopian origin black cumin (Nigella sativa) seed cake. Int. J. Food Sci. Nutr. 2018, 3, 30–31. [Google Scholar]
- Rafi, H.; Dawar, S.; Tariq, M. Combined effect of soil amendment with oil cakes and seed priming in the control of root rot fungi of leguminous and non-leguminous crops. Pak. J. Bot 2016, 48, 1305–1311. Available online: https://www.pakbs.org/pjbot/PDFs/48(3)/54.pdf (accessed on 15 January 2025).
- Thani, P.R.; Johnson, J.B.; Bhattarai, S.; Trotter, T.; Walsh, K.; Broszczak, D.; Naiker, M. Optimizing Nigella oil extraction temperature for sustainable production. Appl. Sci. 2024, 14, 8377. [Google Scholar] [CrossRef]
- Thani, P.R.; Johnson, J.B.; Bhattarai, S.; Trotter, T.; Walsh, K.; Broszczak, D.; Naiker, M. An in-depth examination into how genotype, planting density, and time of sowing affect key phytochemical constituents in Nigella sativa seed. Seeds 2024, 3, 357–380. [Google Scholar] [CrossRef]
- Thani, P.R.; Johnson, J.B.; Bhattarai, S.; Trotter, T.; Walsh, K.; Broszczak, D.; Naiker, M. Characterization of key phytoconstituents in Nigella oil from diverse sources and their transfer efficiency during oil processing. Crops 2024, 4, 540–567. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Bhattarai, S.; Trotter, T.; Naiker, M. Phytochemistry and therapeutical potential of new Nigella Sativa genotypes from Australia. J. Herbs Spices Med. Plants 2022, 29, 229–249. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, B.; Kaur, A.; Singh, N. Proximate, mineral, amino acid composition, phenolic profile, antioxidant and functional properties of oilseed cakes. Int. J. Food Sci. Technol. 2021, 56, 6732–6741. [Google Scholar] [CrossRef]
- Abo-Taleb, H.M.; Rizk, A.E. Utilization of black seeds meal for bakery products preparations. Int. J. Fam. Stud. Food Sci. Nutr. Health 2022, 3, 126–154. [Google Scholar] [CrossRef]
- Malešević, V.K.; Vaštag, Ž.; Popović, L.; Popović, S.; Peričin-Starčevič, I. Characterisation of black cumin, pomegranate and flaxseed meals as sources of phenolic acids. Int. J. Food Sci. Technol. 2014, 49, 210–216. [Google Scholar] [CrossRef]
- Omar, M.; Segni, L.; Nedjimi, M.S.; Belfar, M.; Moussaoui, Y. Determination of polyphenols content, antioxidant and antibacterial activity of Nigella sativa L. seed phenolic extracts. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 411–421. [Google Scholar]
- Omar, M.; Segni, L. The effect of polarity of solvent on the polyphenol content and on their antioxidant and antibacterial activity of meals of the grains of Nigella sativa L. J. Chem. Pharm. Res. 2017, 9, 206–212. [Google Scholar]
- Acar, R.; Geçgel, Ü.; Dursun, N.; Hamurcu, M.; Nizamlıoğlu, A.; Özcan, M.M.; Özcan, M.M. Fatty acids, minerals contents, total phenol, antioxidant activity and proximate analyses of Nigella sativa seed cake and seed cake oil. J. Agroaliment. Process. Technol. 2016, 22, 35–38. [Google Scholar]
- Mariod, A.A.; Ibrahim, R.M.; Ismail, M.; Ismail, N. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem. 2009, 116, 306–312. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Herman, A.; Arct, J.; Pytkowska, K. Evaluation of antioxidant and antimicrobial activities of Oenothera biennis, Borago officinalis, and Nigella sativa seedcake extracts. Food Sci. Biotechnol. 2014, 23, 1029–1036. [Google Scholar] [CrossRef]
- Kadam, D.; Lele, S.S. Extraction, characterization and bioactive properties of Nigella sativa seedcake. J. Food Sci. Technol. 2017, 54, 3936–3947. [Google Scholar] [CrossRef] [PubMed]
- Mulțescu, M.; Marinaș, I.C.; Susman, I.E.; Belc, N. Byproducts (Flour, Meals, and Groats) from the vegetable oil industry as a potential source of antioxidants. Foods 2022, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Ravi, Y.; Vethamoni, I.P.; Saxena, S.N.; Velmurugan, S.; Santanakrishnan, V.P.; Raveendran, M.; Bariya, H.; Harsh, M. Guesstimate of thymoquinone diversity in Nigella sativa L. genotypes and elite varieties collected from Indian states using HPTLC technique. Open Life Sci. 2023, 18, 20220536. [Google Scholar] [CrossRef]
- Herlina; Aziz, S.A.; Kurniawati, A.; Faridah, D.N. Changes of thymoquinone, thymol, and malondialdehyde content of black cumin (Nigella sativa L.) in response to Indonesia tropical altitude variation. HAYATI J. Biosci. 2017, 24, 156–161. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Mei, J.; Qian, M.; Hou, Y.; Liang, M.; Chen, Y.; Wang, C.; Zhang, J. Association of saturated fatty acids with cancer risk: A systematic review and meta-analysis. Lipids Health Dis. 2024, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Vogtschmidt, Y.D.; Soedamah-Muthu, S.S.; Imamura, F.; Givens, D.I.; Lovegrove, J.A. Replacement of saturated fatty acids from meat by dairy sources in relation to Incident cardiovascular disease: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study. Am. J. Clin. Nutr. 2024, 119, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.; Rjces. Phytoconstituents and their mode of extractions: An overview. Res. J. Chem. Environ. Sci. 2016, 4, 8–15. [Google Scholar]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef]
- Garvin, N.; Doucette, W.J.; White, J.C. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. Chemosphere 2015, 130, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Seçmeler, Ö.; Üstündağ, Ö.G. Behavior of lipophilic bioactives during olive oil processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600404. [Google Scholar] [CrossRef]
- Pathan, S.A.; Jain, G.K.; Zaidi, S.M.A.; Akhter, S.; Vohora, D.; Chander, P.; Kole, P.L.; Ahmad, F.J.; Khar, R.K. Stability-indicating ultra-performance liquid chromatography method for the estimation of thymoquinone and its application in biopharmaceutical studies. Biomed. Chromatogr. 2011, 25, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Salmani, J.M.M.; Asghar, S.; Lv, H.; Zhou, J. Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light. Molecules 2014, 19, 5925–5939. [Google Scholar] [CrossRef]
- Smith, L.I.; Tess, R.W.H. Dithymoquinone. ACS Publ. 1944, 66, 1323–1325. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Choopani, R.; Ara, L. Alteration in thymoquinone content of Nigella sativa seeds after processing by a traditional method and stability assessment of raw and processed seeds. Res. J. Pharmacogn. 2018, 5, 9–13. [Google Scholar] [CrossRef]
- Qiu, C.; Zhao, M.; Sun, W.; Zhou, F.; Cui, C. Changes in lipid composition, fatty acid profile and lipid oxidative stability during Cantonese sausage processing. Meat Sci. 2013, 93, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Metherel, A.H.; Stark, K.D. The stability of blood fatty acids during storage and potential mechanisms of degradation: A review. Prostaglandins Leukot. Essent. Fat. Acids 2016, 104, 33–43. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Côrrea, A.P.F.; Michel, I.; Brandeli, A.; Tessaro, I.C.; Marczak, L.D.F. Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. J. Am. Oil Chem. Soc. 2014, 91, 1773–1782. [Google Scholar] [CrossRef]
- Terpinc, P.; Čeh, B.; Ulrih, N.P.; Abramovič, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crops Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Brahmi, F.; Oufighou, A.; Smail-Benazzouz, L.; Hammiche, N.; Hassaine, L.; Boulekbache-Makhlouf, L.; Madani, K.; Blando, F. Assessment of the Chemical Composition and Antioxidant Capacity of Flowers, Seeds, and Seed Cake of Cactus Pear (Opuntia ficus-indica L.) and Their Application in Biscuits. Resources 2024, 13, 124. [Google Scholar] [CrossRef]
- Dragović-Uzelac, V.; Levaj, B.; Bursać, D.; Pedisić, S.; Radojčić, I.; Biško, A. Total phenolics and antioxidant capacity assays of selected fruits. Agric. Conspec. Sci. 2007, 72, 279–284. [Google Scholar]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Dobrinas, S.; Soceanu, A.; Popescu, V.; Carazeanu Popovici, I.; Jitariu, D. Relationship between total phenolic content, antioxidant capacity, Fe and Cu content from Tea plant samples at different brewing times. Processes 2021, 9, 1311. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef] [PubMed]
Genotypes | TPC (mg GAE/100 g DW of Solid Residue) | FRAP (mg TE/100 g DW of Solid Residue) | CUPRAC (mg TE/100 g DW of Solid Residue) | TQ (mg/100 g DW of Solid Residue) |
---|---|---|---|---|
AVTKS#1 | 894.6 ± 39.8 cde | 878.9 ± 57.2 ab | 4677.7 ± 236.4 b | 156.0 ± 14.8 a |
AVTKS#2 | 795.2 ± 30.3 ab | 913.6 ± 39.5 abc | 4579.6 ± 378.0 b | 168.1 ± 14.0 ab |
AVTKS#3 | 879.8 ± 68.1 cde | 868.0 ± 75.1 a | 4601.3 ± 230.8 b | 160.7 ± 14.3 a |
AVTKS#4 | 885.0 ± 40.3 cde | 985.9 ± 20.8 bc | 4786.1 ± 333.1 b | 200.8 ± 17.6 bc |
AVTKS#5 | 934.8 ± 34.7 e | 1010.5 ± 40.2 c | 4334.8 ± 283.1 ab | 181.6 ± 14.8 abc |
AVTKS#6 | 839.3 ± 37.5 bcd | 954.0 ± 59.2 abc | 4520.6 ± 244.5 b | 167.5 ± 15.4 ab |
AVTKS#7 | 919.0 ± 35.1 de | 967.6 ± 54.1 abc | 4801.5 ± 312.4 b | 207.2 ± 19.9 c |
AVTKS#8 | 887.2 ± 40.9 cde | 917.0 ± 75.7 abc | 4537.9 ± 207.6 b | 260.1 ± 20.8 d |
AVTKS#9 | 886.0 ± 36.6 cde | 877.8 ± 76.7 ab | 4282.6 ± 259.2 ab | 251.4 ± 22.6 d |
AVTKS#10 | 824.8 ± 49.8 bc | 885.2 ± 53.4 ab | 4751.8 ± 210.2 b | 188.3 ± 15.5 abc |
AVTKS#11 | 720.5 ± 41.8 a | 853.1 ± 71.0 a | 3863.1 ± 299.6 a | 166.3 ± 14.1 a |
AVTKS#12 | 762.0 ± 39.1 ab | 866.4 ± 59.8 a | 4280.8 ± 397.4 ab | 182.4 ± 16.9 abc |
Average | 852.4 ± 41.2 | 914.8 ± 56.9 | 4501.5 ± 282.7 | 190.9 ± 16.7 |
Fatty Acids | Composition of Fatty Acid (mg/g of Solid Residue) in the Solid Residue of Nigella Genotypes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AVTKS#1 | AVTKS#2 | AVTKS#3 | AVTKS#4 | AVTKS#5 | AVTKS#6 | AVTKS#7 | AVTKS#8 | AVTKS#9 | AVTKS#10 | AVTKS#11 | AVTKS#12 | |
SFAs | ||||||||||||
C14:0 | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.2 ± 0.0 a |
C15:0 | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a |
C16:0 | 1.1 ± 0.1 a | 1.2 ± 0.1 a | 1.2 ± 0.1 a | 1.2 ± 0.1 a | 1.1 ± 0.1 a | 1.1 ± 0.1 a | 1.2 ± 0.1 a | 1.2 ± 0.0 a | 1.1 ± 0.0 a | 1.1 ± 0.0 a | 1.1 ± 0.1 a | 1.1 ± 0.0 a |
C17:0 | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 b | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 ab | 0.1 ± 0.0 a | 0.1 ± 0.0 ab | 0.1 ± 0.0 b | 0.1 ± 0.0 ab | 0.1 ± 0.0 a |
C18:0 | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.4 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.4 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.4 ± 0.0 a | 0.3 ± 0.0 a | 0.4 ± 0.0 a |
C20:0 | 0.2 ± 0.0 c | 0.2 ± 0.0 c | 0.2 ± 0.0 c | 0.2 ± 0.0 a | 0.2 ± 0.0 bc | 0.2 ± 0.0 c | 0.2 ± 0.0 c | 0.2 ± 0.0 b | 0.2 ± 0.0 c | 0.2 ± 0.0 c | 0.2 ± 0.0 bc | 0.2 ± 0.0 bc |
Total SFAs | 2.0 ± 0.1 a | 2.1 ± 0.1 a | 2.1 ± 0.1 a | 2.0 ± 0.1 a | 2.0 ± 0.1 a | 2.0 ± 0.1 a | 2.2 ± 0.1 a | 2.0 ± 0.1 a | 2.0 ± 0.0 a | 2.1 ± 0.1 a | 2.0 ± 0.1 a | 2.0 ± 0.0 a |
MUFAs | ||||||||||||
C16:1 (cis-9) | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 cd | 0.1 ± 0.0 bcd | 0.1 ± 0.0 cd | 0.1 ± 0.0 abc | 0.1 ± 0.0 bcd | 0.1 ± 0.0 bcd | 0.1 ± 0.0 ab | 0.1 ± 0.0 d | 0.1 ± 0.0 bcd | 0.1 ± 0.0 abc |
C17:1 (cis-10) | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a |
C18:1 | 1.4 ± 0.1 a | 2.9 ± 0.1 c | 2.8 ± 0.4 c | 2.8 ± 0.2 c | 1.6 ± 0.2 ab | 2.8 ± 0.1 c | 3.0 ± 0.3 c | 2.7 ± 0.1 c | 2.9 ± 0.2 c | 2.7 ± 0.1 c | 2.2 ± 0.3 bc | 1.4 ± 0.0 a |
C20:1 (cis-11) | 0.1 ± 0.0 ab | 0.1 ± 0.0 d | 0.1 ± 0.0 d | 0.1 ± 0.0 bcd | 0.1 ± 0.0 cd | 0.1 ± 0.0 bcd | 0.1 ± 0.0 bcd | 0.1 ± 0.0 cd | 0.1 ± 0.0 cd | 0.1 ± 0.0 abc | 0.1 ± 0.0 a | 0.1 ± 0.0 a |
Total MUFAs | 2.0 ± 0.1 a | 3.6 ± 0.1 c | 3.5 ± 0.4 c | 3.4 ± 0.2 c | 2.3 ± 0.2 ab | 3.4 ± 0.1 c | 3.6 ± 0.3 c | 3.4 ± 0.1 c | 3.5 ± 0.2 c | 3.3 ± 0.1 c | 2.9 ± 0.3 bc | 2.0 ± 0.1 a |
PUFAs | ||||||||||||
C18:2 | 10.3 ± 1.0 ab | 10.8 ± 1.2 ab | 10.9 ± 1.9 ab | 10.5 ± 1.3 ab | 10.3 ± 1.1 ab | 10.7 ± 1.3 ab | 11.5 ± 0.8 b | 10.7 ± 0.4 ab | 10.5 ± 0.1 ab | 10.7 ± 0.3 ab | 8.7 ± 0.6 ab | 7.8 ± 0.6 a |
C18:3 (cis 9,12,15) | 0.1 ± 0.0 abc | 0.1 ± 0.0 abc | 0.1 ± 0.0 abc | 0.1 ± 0.0 bc | 0.1 ± 0.0 bc | 0.1 ± 0.0 c | 0.1 ± 0.0 bc | 0.1 ± 0.0 abc | 0.1 ± 0.0 abc | 0.1 ± 0.0 a | 0.1 ± 0.0 abc | 0.1 ± 0.0 ab |
C20:2 (cis-11,14) | 0.3 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a |
Total PUFAs | 10.7 ± 1.0 ab | 11.3 ± 1.2 ab | 11.4 ± 1.9 ab | 11.0 ± 1.3 ab | 10.8 ± 1.1 ab | 11.2 ± 1.2 ab | 12.1 ± 0.8 b | 11.2 ± 0.4 ab | 11.0 ± 0.1 ab | 11.2 ± 0.3 ab | 9.2 ± 0.7 ab | 8.2 ± 0.6 a |
Total MUFAs + PUFAs | 12.8 ± 1.1 ab | 14.9 ± 1.2 b | 14.9 ± 1.8 b | 14.4 ± 1.5 b | 13.1 ± 1.0 ab | 14.6 ± 1.2 b | 15.7 ± 1.1 b | 14.6 ± 0.3 b | 14.5 ± 0.3 b | 14.5 ± 0.3 b | 12.0 ± 1.0 ab | 10.2 ± 0.6 a |
MUFAs/SFAs | 1.0 ± 0.0 a | 1.7 ± 0.1 bc | 1.6 ± 0.1 bc | 1.7 ± 0.1 bc | 1.1 ± 0.1 a | 1.7 ± 0.1 bc | 1.7 ± 0.1 bc | 1.6 ± 0.0 bc | 1.8 ± 0.1 c | 1.6 ± 0.1 bc | 1.4 ± 0.1 ab | 1.0 ± 0.0 a |
PUFAs/SFAs | 5.3 ± 0.4 a | 5.3 ± 0.4 a | 5.4 ± 0.9 a | 5.4 ± 0.6 a | 5.4 ± 0.4 a | 5.6 ± 0.7 a | 5.5 ± 0.2 a | 5.5 ± 0.4 a | 5.5 ± 0.1 a | 5.4 ± 0.3 a | 4.5 ± 0.2 a | 4.2 ± 0.3 a |
MUFAs + PUFAs/SFAs | 6.3 ± 0.4 ab | 7.0 ± 0.4 b | 7.0 ± 0.9 b | 7.0 ± 0.7 b | 6.5 ± 0.4 ab | 7.3 ± 0.7 b | 7.2 ± 0.3 b | 7.2 ± 0.4 b | 7.3 ± 0.2 b | 7.1 ± 0.3 b | 5.9 ± 0.2 ab | 5.2 ± 0.3 a |
Nigella Genotypes | Phytoconstituents Transfer (%) into Solid Residue from Seeds | ||||||
---|---|---|---|---|---|---|---|
Transferred TPC% | Transferred FRAP% | Transferred CUPRAC% | Transferred TQ% | Transferred SFA% | Transferred MUFA% | Transferred PUFA% | |
AVTKS#1 | 78.1 ± 4.2 a | 72.5 ± 6.7 ab | 87.7 ± 6.0 a | 17.7 ± 0.9 a | 8.9 ± 1.2 a | 12.3 ± 1.2 ab | 7.4 ± 1.4 a |
AVTKS#2 | 85.4 ± 5.1 a | 73.0 ± 4.9 ab | 88.0 ± 9.1 a | 17.8 ± 3.0 a | 7.7 ± 0.3 a | 16.6 ± 1.0 abcd | 7.1 ± 1.1 a |
AVTKS#3 | 85.3 ± 7.9 a | 68.5 ± 5.3 ab | 89.9 ± 7.1 a | 17.6 ± 2.6 a | 7.9 ± 0.6 a | 17.0 ± 2.8 abcd | 7.2 ± 2.1 a |
AVTKS#4 | 80.2 ± 3.0 a | 67.6 ± 2.1 ab | 89.5 ± 5.6 a | 18.1 ± 2.5 a | 8.5 ± 0.7 a | 18.3 ± 1.6 d | 7.2 ± 1.4 a |
AVTKS#5 | 78.3 ± 5.8 a | 68.3 ± 2.9 ab | 85.9 ± 6.0 a | 18.1 ± 2.7 a | 8.7 ± 0.5 a | 12.9 ± 2.3 abc | 7.5 ± 0.8 a |
AVTKS#6 | 84.9 ± 2.6 a | 70.8 ± 3.3 ab | 88.9 ± 4.7 a | 17.8 ± 2.6 a | 8.1 ± 0.1 a | 17.3 ± 1.7 bcd | 7.2 ± 1.1 a |
AVTKS#7 | 85.9 ± 4.5 a | 68.5 ± 6.1 ab | 90.4 ± 5.0 a | 19.3 ± 3.1 a | 7.9 ± 0.6 a | 17.5 ± 2.7 cd | 7.0 ± 0.8 a |
AVTKS#8 | 80.5 ± 4.2 a | 65.4 ± 7.4 a | 86.3 ± 4.9 a | 17.7 ± 1.3 a | 7.5 ± 0.4 a | 16.2 ± 0.5 abcd | 6.5 ± 0.2 a |
AVTKS#9 | 78.8 ± 5.7 a | 70.1 ± 5.4 ab | 88.6 ± 3.9 a | 18.6 ± 1.9 a | 7.7 ± 0.3 a | 17.2 ± 1.8 bcd | 6.8 ± 0.4 a |
AVTKS#10 | 85.1 ± 2.6 a | 68.2 ± 2.9 ab | 87.0 ± 6.6 a | 17.0 ± 2.4 a | 7.6 ± 0.6 a | 16.2 ± 0.4 abcd | 6.5 ± 0.2 a |
AVTKS#11 | 84.9 ± 5.0 a | 75.7 ± 6.4 b | 84.5 ± 7.1 a | 15.9 ± 2.7 a | 7.9 ± 0.8 a | 15.6 ± 1.8 abcd | 7.1 ± 1.2 a |
AVTKS#12 | 84.3 ± 4.1 a | 72.8 ± 4.2 ab | 88.4 ± 8.1 a | 16.4 ± 0.9 a | 8.2 ± 0.6 a | 12.0 ± 1.1 a | 7.2 ± 0.1 a |
Average | 82.7 ± 4.6 | 70.1 ± 4.8 | 87.9 ± 6.2 | 17.7 ± 2.2 | 8.0 ± 0.6 | 15.8 ± 1.6 | 7.1 ± 0.9 |
Nigella Genotypes | Phytoconstituents Overall Transfer (%) from Seeds to Resulting Oil and Solid Residue | ||||||
---|---|---|---|---|---|---|---|
Transferred TPC% | Transferred FRAP% | Transferred CUPRAC% | Transferred TQ% | Transferred SFA% | Transferred MUFA% | Transferred PUFA% | |
AVTKS#1 | 80.6 ± 4.0 a | 81.5 ± 7.2 ab | 89.7 ± 6.0 a | 57.6 ± 4.4 ab | 80.7 ± 9.9 ab | 76.2 ± 7.0 a | 59.7 ± 6.9 a |
AVTKS#2 | 88.2 ± 4.9 a | 81.3 ± 4.6 ab | 89.9 ± 9.0 a | 58.1 ± 6.2 ab | 71.7 ± 6.4 ab | 84.2 ± 7.3 a | 55.4 ± 3.3 a |
AVTKS#3 | 88.1 ± 7.7 a | 77.8 ± 4.3 ab | 91.8 ± 7.0 a | 59.5 ± 8.4 ab | 75.3 ± 1.0 ab | 84.7 ± 4.7 a | 57.4 ± 2.5 a |
AVTKS#4 | 82.7 ± 2.8 a | 75.8 ± 1.6 ab | 91.4 ± 5.5 a | 56.0 ± 3.9 ab | 76.2 ± 11.4 ab | 83.2 ± 4.8 a | 55.9 ± 8.5 a |
AVTKS#5 | 80.9 ± 5.8 a | 76.7 ± 2.7 ab | 87.9 ± 5.9 a | 57.8 ± 7.5 ab | 79.9 ± 3.7 ab | 79.2 ± 9.1 a | 58.1 ± 2.9 a |
AVTKS#6 | 87.7 ± 2.5 a | 79.0 ± 2.9 ab | 90.5 ± 4.7 a | 58.6 ± 6.3 ab | 74.4 ± 5.1 ab | 82.5 ± 5.5 a | 56.4 ± 1.9 a |
AVTKS#7 | 88.3 ± 4.8 a | 75.6 ± 5.6 ab | 92.3 ± 5.0 a | 55.6 ± 2.0 ab | 68.7 ± 5.0 a | 79.2 ± 5.4 a | 51.6 ± 5.6 a |
AVTKS#8 | 83.2 ± 4.2 a | 74.2 ± 7.9 a | 88.4 ± 4.9 a | 53.9 ± 4.8 ab | 76.7 ± 1.6 ab | 86.2 ± 0.3 a | 57.7 ± 1.3 a |
AVTKS#9 | 81.3 ± 5.7 a | 77.9 ± 5.3 ab | 90.2 ± 3.9 a | 51.4 ± 4.5 a | 68.5 ± 6.7 a | 78.9 ± 6.5 a | 51.7 ± 3.5 a |
AVTKS#10 | 88.1 ± 2.8 a | 78.0 ± 2.6 ab | 89.3 ± 6.6 a | 62.8 ± 7.7 ab | 82.6 ± 7.3 ab | 90.6 ± 6.2 a | 62.4 ± 5.2 ab |
AVTKS#11 | 88.2 ± 4.9 a | 83.9 ± 4.8 b | 86.3 ± 7.1 a | 57.8 ± 8.5 ab | 77.8 ± 8.1 ab | 84.4 ± 7.1 a | 61.6 ± 7.7 ab |
AVTKS#12 | 88.0 ± 4.0 a | 84.4 ± 3.5 b | 90.5 ± 8.1 a | 64.9 ± 5.3 b | 92.4 ± 12.0 b | 83.9 ± 8.9 a | 76.6 ± 6.6 b |
Average | 85.4 ± 4.5 | 78.8 ± 4.4 | 89.9 ± 6.1 | 57.8 ± 5.8 | 77.1 ± 6.5 | 82.8 ± 6.1 | 58.7 ± 4.7 |
Solid Residue | TPC | FRAP | CUPRAC | TQ | C14:0 | C15:0 | C16:0 | C17:0 | C18:0 | C20:0 | C16:1 | C17:1 | C18:1 | C20:1 | C18:2 | C18:3 | C20:2 | Σ SFA | Σ MUFA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC | −0.029 | |||||||||||||||||||
FRAP | −0.045 | 0.494 ** | ||||||||||||||||||
CUPRAC | −0.121 | 0.537 ** | 0.237 * | |||||||||||||||||
TQ | −0.103 | 0.314 ** | 0.078 | 0.127 | ||||||||||||||||
C14:0 | 0.225 | −0.024 | 0.335 * | −0.221 | 0.152 | |||||||||||||||
C15:0 | −0.241 | 0.080 | −0.020 | 0.486 ** | 0.373 * | −0.267 | ||||||||||||||
C16:0 | 0.339 * | −0.003 | −0.140 | 0.280 | 0.306 | 0.288 | 0.096 | |||||||||||||
C17:0 | 0.020 | 0.022 | 0.216 | −0.153 | 0.336 * | 0.269 | −0.058 | −0.040 | ||||||||||||
C18:0 | 0.094 | 0.099 | 0.107 | −0.037 | 0.037 | 0.398 * | −0.242 | 0.386 * | 0.374 * | |||||||||||
C20:0 | 0.162 | 0.334 * | −0.099 | −0.092 | 0.073 | 0.129 | −0.116 | 0.024 | 0.379 * | 0.332 * | ||||||||||
C16:1 | −0.100 | −0.097 | 0.150 | 0.123 | 0.402 * | 0.112 | 0.211 | 0.103 | 0.306 | 0.170 | −0.302 | |||||||||
C17:1 | −0.060 | −0.056 | −0.139 | 0.167 | 0.160 | 0.029 | 0.068 | 0.404 * | 0.110 | 0.231 | −0.023 | 0.194 | ||||||||
C18:1 | 0.412 * | 0.042 | 0.165 | 0.038 | 0.378 * | 0.096 | −0.128 | 0.481 ** | 0.252 | 0.121 | −0.008 | 0.172 | 0.235 | |||||||
C20:1 | 0.399 * | 0.018 | −0.272 | −0.015 | 0.146 | −0.169 | 0.110 | 0.378 * | 0.061 | −0.076 | 0.129 | 0.000 | 0.114 | 0.491 ** | ||||||
C18:2 | 0.434 ** | −0.001 | −0.164 | 0.017 | 0.212 | 0.202 | −0.130 | 0.497 ** | 0.094 | 0.031 | 0.190 | 0.061 | 0.012 | 0.458 ** | 0.468 ** | |||||
C18:3 | 0.489 ** | −0.136 | −0.300 | 0.032 | −0.191 | −0.176 | −0.050 | 0.185 | −0.257 | −0.035 | 0.016 | −0.241 | −0.001 | 0.078 | 0.315 | 0.210 | ||||
C20:2 | 0.549 ** | 0.013 | −0.004 | 0.152 | 0.386 * | 0.294 | 0.193 | 0.716 ** | 0.123 | 0.241 | 0.097 | 0.189 | 0.311 | 0.569 ** | 0.561 ** | 0.449 ** | 0.243 | |||
Σ SFA | 0.286 | −0.025 | −0.145 | 0.141 | 0.267 | 0.321 | 0.010 | 0.918 ** | 0.097 | 0.567 ** | 0.178 | 0.148 | 0.385 * | 0.402 * | 0.237 | 0.487 ** | 0.077 | 0.633 ** | ||
Σ MUFA | 0.406 * | 0.044 | 0.148 | 0.045 | 0.380 * | 0.103 | −0.123 | 0.495 ** | 0.269 | 0.148 | −0.002 | 0.200 | 0.269 | 0.998 ** | 0.499 ** | 0.455 ** | 0.072 | 0.587 ** | 0.419 * | |
Σ PUFA | 0.439 ** | −0.006 | −0.167 | 0.021 | 0.225 | 0.205 | −0.116 | 0.512 ** | 0.094 | 0.036 | 0.188 | 0.065 | 0.019 | 0.467 ** | 0.480 ** | 0.999 ** | 0.217 | 0.473 ** | 0.501 ** | 0.464 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thani, P.R.; Johnson, J.B.; Bhattarai, S.; Trotter, T.; Walsh, K.; Broszczak, D.; Naiker, M. Profiling Key Phytoconstituents in Screw-Pressed Nigella Solid Residue and Their Distribution in Products and Byproducts During Oil Processing. Appl. Sci. 2025, 15, 986. https://doi.org/10.3390/app15020986
Thani PR, Johnson JB, Bhattarai S, Trotter T, Walsh K, Broszczak D, Naiker M. Profiling Key Phytoconstituents in Screw-Pressed Nigella Solid Residue and Their Distribution in Products and Byproducts During Oil Processing. Applied Sciences. 2025; 15(2):986. https://doi.org/10.3390/app15020986
Chicago/Turabian StyleThani, Parbat Raj, Joel B. Johnson, Surya Bhattarai, Tieneke Trotter, Kerry Walsh, Daniel Broszczak, and Mani Naiker. 2025. "Profiling Key Phytoconstituents in Screw-Pressed Nigella Solid Residue and Their Distribution in Products and Byproducts During Oil Processing" Applied Sciences 15, no. 2: 986. https://doi.org/10.3390/app15020986
APA StyleThani, P. R., Johnson, J. B., Bhattarai, S., Trotter, T., Walsh, K., Broszczak, D., & Naiker, M. (2025). Profiling Key Phytoconstituents in Screw-Pressed Nigella Solid Residue and Their Distribution in Products and Byproducts During Oil Processing. Applied Sciences, 15(2), 986. https://doi.org/10.3390/app15020986