Two-Stage Efficient Parking Space Detection Method Based on Deep Learning and Computer Vision
Abstract
:1. Introduction
2. Research Content
2.1. Research Content and Innovation
2.2. Parking Space Detection
2.3. Key Point Detection
2.4. Local Image Discrimination
2.5. Parking Space Inference
3. Result Analysis
3.1. Accuracy Analysis
3.2. Positioning Error Analysis
3.3. Overall Performance Analysis of Different Algorithms
3.4. Experimental Hardware
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Luelmo, S.P.; Garcia-Espinosa, F.J.; Montemayor, A.S.; José Pantrigo, J. Combining deep learning methods and rule-based systems for automatic parking space detection. Integr. Comput. Aided Eng. 2025, 32, 95–106. [Google Scholar] [CrossRef]
- Al-Absi, H.R.; Devaraj, J.D.D.; Sebastian, P.; Voon, Y.V. Vision-based automated parking system. In Proceedings of the 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), Kuala Lumpur, Malaysia, 10–13 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 757–760. [Google Scholar]
- Wong, G.S.; Goh KO, M.; Tee, C.; Md Sabri, A.Q. Review of vision-based deep learning parking slot detection on surround view images. Sensors 2023, 23, 6869. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, C.; Zhang, Q.; Guo, T.; Miao, Z. Automatic parking slot detection based on around view monitor (AVM) systems. In Proceedings of the 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Jo, Y.G.; Hong, S.H.; Hwang, S.S.; Ha, J.M. Fisheye Lens Camera based Autonomous Valet Parking System. arXiv 2021, arXiv:2104.13119. [Google Scholar]
- Jung, H.G.; Kim, D.S.; Yoon, P.J.; Kim, J. Parking slot markings recognition for automatic parking assist system. In Proceedings of the IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 13–15 June 2006; pp. 106–113. [Google Scholar]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision; Thomson-Engineering: Atlanta, GA, USA, 2008. [Google Scholar]
- Wang, C.; Zhang, H.; Yang, M.; Wang, X.; Ye, L.; Guo, C. Automatic parking based on a bird’s eye view vision system. Adv. Mech. Eng. 2014, 6, 847406. [Google Scholar] [CrossRef]
- Deans, S.R. The Radon Transform and Some of Its Applications; Dover: New York, NY, USA, 1983. [Google Scholar]
- Kumar, V.R.; Eising, C.; Witt, C.; Yogamani, S.K. Surround-view fisheye camera perception for automated driving: Overview, survey & challenges. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3638–3659. [Google Scholar]
- Hamada, K.; Hu, Z.; Fan, M.; Chen, H. Surround view based parking lot detection and tracking. In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Republic of Korea, 28 June–1 July 2015; pp. 1106–1111. [Google Scholar]
- Matas, J.; Galambos, C.; Kittler, J. Robust detection of lines using the progressive probabilistic hough transform. Comput. Vis. Image Understand 2000, 78, 119–137. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jung, H.G. Automatic parking space detection and tracking for underground and indoor environments. IEEE Trans. Ind. Electron. 2016, 63, 5687–5698. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jung, H.G. Full-automatic recognition of various parking slot markings using a hierarchical tree structure. Opt. Eng. 2013, 52, 037203. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jung, H.G. Sensor fusion-based vacant parking slot detection and tracking. IEEE Trans. Intell. Transp. Syst. 2014, 15, 21–36. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Vedaldi, A.; Zisserman, A. VGG Convolutional Neural Networks Practical; Department of Engineering Science, University of Oxford: Oxford, UK, 2016; p. 66. [Google Scholar]
- Rajinikanth, V.; Joseph Raj, A.N.; Thanaraj, K.P.; Naik, G.R. A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Appl. Sci. 2020, 10, 3429. [Google Scholar] [CrossRef]
- Thakur, N.; Bhattacharjee, E.; Jain, R.; Acharya, B.; Hu, Y.C. Deep learning-based parking occupancy detection framework using ResNet and VGG-16. Multimed. Tools Appl. 2024, 83, 1941–1964. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Koonce, B.; Koonce, B.E. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization; Apress: New York, NY, USA, 2021. [Google Scholar]
- Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019, 90, 119–133. [Google Scholar] [CrossRef]
- Zhu, Y.; Newsam, S. Densenet for dense flow. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 790–794. [Google Scholar]
- Huang, G.; Liu, S.; Van der Maaten, L.; Weinberger, K.Q. Condensenet: An efficient densenet using learned group convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2752–2761. [Google Scholar]
- Rajyalakshmi, V.; Lakshmanna, K. Detection of car parking space by using Hybrid Deep DenseNet Optimization algorithm. Int. J. Netw. Manag. 2024, 34, e2228. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrel, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Yasaswi, B. AOA based masked region-CNN model for detection of parking space in IoT environment. Int. Res. J. Multidiscip. Technovation 2024, 6, 97–108. [Google Scholar]
- Zhu, Y.M.; Abdalla, A.; Tang, Z.; Cen, H.Y. Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning. Biosyst. Eng. 2022, 219, 165–176. [Google Scholar] [CrossRef]
- Chaudhry, M.; Maurya, S.; Singh, S.P.; Yadav, S. An Analysis of Deep Learning-Based Studies on Object Detection. In Proceedings of the 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 1–3 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 134–138. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Huang, Y.; Huang, H.; Qin, F.; Chen, Y.; Zou, J.; Liu, B.; Qiao, X. YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9. Agriculture 2024, 14, 2201. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Amsterdam, The Netherlands, 2016; pp. 21–37. [Google Scholar]
- Zhai, S.; Shang, D.; Wang, S.; Dong, S. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 2020, 8, 24344–24357. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Min, C.; Xu, J.; Xiao, L.; Zhao, D.; Nie, Y.; Dai, B. Attentional graph neural network for parking-slot detection. IEEE Robot. Autom. Lett. 2021, 6, 3445–3450. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar]
- Alif, M.A.R. YOLOv11 for Vehicle Detection: Advancements, Performance, and Applications in Intelligent Transportation Systems. arXiv 2024, arXiv:2410.22898. [Google Scholar]
- Zhang, L.; Huang, J.; Li, X.; Xiong, L. Vision-based parking-slot detection: A DCNN-based approach and a large-scale benchmark dataset. IEEE Trans. Image Process. 2018, 27, 5350–5364. [Google Scholar] [CrossRef]
Target Classification | Target Center | Target Center | Target Width | Target Altitude |
---|---|---|---|---|
0 | 0.212963 | 0.197090 | 0.042328 | 0.042328 |
0 | 0.212963 | 0.328042 | 0.042328 | 0.042328 |
0 | 0.212963 | 0.609127 | 0.042328 | 0.042328 |
1 | 0.089286 | 0.472884 | 0.175926 | 0.284392 |
Parameter | Value | Parameter | Value |
---|---|---|---|
p | 56 Pixel | 30° | |
71.5% | 195 Pixel | ||
83 Pixel | 160 Pixel | ||
279 Pixel | 86 Pixel | ||
139 Pixel | 0.5–1.5 |
Method | Localization Error (in Pixel) | Localization Error (in cm) |
---|---|---|
HoG+SVM | 4.03 ± 1.98 | 6.72 ± 3.30 |
ACF+Boosting | 2.86 ± 1.54 | 4.77 ± 2.57 |
Faster-RCNN | 3.67 ± 2.32 | 6.12 ± 3.87 |
SSD | 1.51 ± 1.17 | 2.52 ± 1.95 |
DETR | 1.76 ± 1.43 | 3.52 ± 2.16 |
YoloV11-based | 1.12 ± 1.05 | 1.46 ± 1.75 |
Method | Time Cost (ms) |
---|---|
Faster-RCNN | 63.7 |
SSD | 27.1 |
DETR | 106.4 |
YoloV11 | 9.3 |
Method | Precision Rate | Time Cost (ms) |
---|---|---|
98.55% | 269.4 | |
98.19% | 138.1 | |
99.54% | 95.6 | |
98.24% | 12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Tang, R.; Kang, W.; Xu, Z.; Qian, C. Two-Stage Efficient Parking Space Detection Method Based on Deep Learning and Computer Vision. Appl. Sci. 2025, 15, 1004. https://doi.org/10.3390/app15031004
Jiang J, Tang R, Kang W, Xu Z, Qian C. Two-Stage Efficient Parking Space Detection Method Based on Deep Learning and Computer Vision. Applied Sciences. 2025; 15(3):1004. https://doi.org/10.3390/app15031004
Chicago/Turabian StyleJiang, Junzhe, Rongnian Tang, Weian Kang, Zengcai Xu, and Cheng Qian. 2025. "Two-Stage Efficient Parking Space Detection Method Based on Deep Learning and Computer Vision" Applied Sciences 15, no. 3: 1004. https://doi.org/10.3390/app15031004
APA StyleJiang, J., Tang, R., Kang, W., Xu, Z., & Qian, C. (2025). Two-Stage Efficient Parking Space Detection Method Based on Deep Learning and Computer Vision. Applied Sciences, 15(3), 1004. https://doi.org/10.3390/app15031004