Comprehensive Nutrient Profiling and Untargeted Metabolomic Assessment of Siraitia grosvenorii from Different Regions and Varying Degrees of Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Protein Content
2.2.2. Total Sugar Content
2.2.3. Fat Content
2.2.4. Ash Content
2.2.5. Mineral Analysis
2.2.6. Untargeted Metabolomics Analysis
2.3. Statistical Analysis
3. Results
3.1. Nutritional Component Variability Analysis
3.2. Mineral Analysis
3.3. Untargeted Metabolomics Analysis
3.3.1. Orthogonal Partial Least Squares Discriminant Analysis OPLS-DA
3.3.2. Differential Metabolite Screening
3.3.3. Enrichment Pathway Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Lin, L.-M.; Sui, F.; Wang, Z.-M.; Huo, H.-R.; Dai, L.; Jiang, T.-L. Chemistry and pharmacology of Siraitia grosvenorii: A review. Chin. J. Nat. Med. 2014, 12, 89–102. [Google Scholar] [CrossRef]
- Gong, X.; Chen, N.; Ren, K.; Jia, J.; Wei, K.; Zhang, L.; Lv, Y.; Wang, J.; Li, M. The fruits of Siraitia grosvenorii: A review of a Chinese food-medicine. Front. Pharmacol. 2019, 10, 1400. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Rivero-Huguet, M.E.; Hughes, B.H.; Marshall, W.D. Isolation of the sweet components from Siraitia grosvenorii. Food Chem. 2008, 107, 1022–1028. [Google Scholar] [CrossRef]
- Wu, T.; Zou, R.; Pu, D.; Lan, Z.; Zhao, B. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercrop** with Chinese chestnut. BMC Plant Biol. 2021, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Quintaes, K.D.; Diez-Garcia, R.W. The importance of minerals in the human diet. In Handbook of Mineral Elements in Food; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–21. [Google Scholar] [CrossRef]
- Chuwa, C.; Dhiman, A.K.; Kathuria, D. Effect of Processing Methods on the Nutritional Composition of Ripe Pumpkin Fruit. Curr. J. Appl. Sci. Technol. 2022, 41, 47–56. [Google Scholar] [CrossRef]
- Duan, J.; Zhu, D.; Zheng, X.; Ju, Y.; Wang, F.; Sun, Y.; Fan, B. Siraitia grosvenorii (swingle), C. Jeffrey: Research progress of its active components, pharmacological effects, and extraction methods. Foods 2023, 12, 1373. [Google Scholar] [CrossRef]
- Wei, R.; Li, G.; Seymour, A.B. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 2010, 82, 5527–5533. [Google Scholar] [CrossRef]
- Peng, Y.; Hong, J.; Raftery, D.; Xia, Q.; Du, D. Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2021, 1867, 166123. [Google Scholar] [CrossRef]
- Scholz, M.; Gatzek, S.; Sterling, A.; Fiehn, O.; Selbig, J. Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics 2004, 20, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, M.; Patti, G.J. Chemical discovery in the era of metabolomics. J. Am. Chem. Soc. 2020, 142, 9097–9105. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- GB/T 9695.31-2008; Meat Products—Determination of Total Sugars Content. Meat Poultry Eggs and Their Products: Beijing, China, 2008.
- Shang, X.-L.; Liu, C.-Y.; Dong, H.-Y.; Peng, H.-H.; Zhu, Z.-Y. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from Wheat Bran. J. Mol. Struct. 2021, 1233, 130096. [Google Scholar] [CrossRef]
- Carpenter, C. Determination of fat content. In Food Analysis Laboratory Manual; Springer: Boston, MA, USA, 2010; pp. 29–37. [Google Scholar] [CrossRef]
- Ismail, B.P. Ash content determination. In Nielsen’s Food Analysis Laboratory Manual; Springer International Publishing: Cham, Switzerland, 2024; pp. 129–131. [Google Scholar]
- Vasilev, N.; Boccard, J.; Lang, G.; Grömping, U.; Fischer, R.; Goepfert, S.; Rudaz, S.; Schillberg, S. Structured plant metabolomics for the simultaneous exploration of multiple factors. Sci. Rep. 2016, 6, 37390. [Google Scholar] [CrossRef] [PubMed]
- Laur, N.; Kinscherf, R.; Pomytkin, K.; Kaiser, L.; Knes, O.; Deigner, H.-P. ICP-MS trace element analysis in serum and whole blood. PLoS ONE 2020, 15, e0233357. [Google Scholar] [CrossRef]
- Tanvir, E.M.; Whitfield, K.M.; Ng, J.C.; Shaw, P.N. Development and validation of an ICP-MS method and its application to determine multiple trace elements in small volumes of whole blood and plasma. J. Anal. Toxicol. 2020, 44, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Wilson, I.D.; et al. Development of a robust and repeatable UPLC− MS method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Huang, X.-P.; Lei, L.; Lei, S.-X.; Zhu, W.-W.; Yan, J. Traceability of the geographical origin of Siraitia grosvenorii based on multielement contents coupled with chemometric techniques. Sci. Rep. 2021, 11, 21150. [Google Scholar] [CrossRef]
- Islam, R.; Akash, S.; Jony, M.H.; Alam, N.; Nowrin, F.T.; Rahman, M.; Rauf, A.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell. Biochem. 2023, 478, 2141–2171. [Google Scholar] [CrossRef] [PubMed]
- Kazaz, S.; Miray, R.; Lepiniec, L.; Baud, S. Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog. Lipid Res. 2022, 85, 101138. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Hashemi, F.S.G.; Rafii, M.Y.; Ismail, M.R.; Mahmud, T.M.M.; Rahim, H.A.; Asfaliza, R.; Malek, M.A.; Latif, M.A. Biochemical, genetic and molecular advances of fragrance characteristics in rice. Crit. Rev. Plant Sci. 2013, 32, 445–457. [Google Scholar] [CrossRef]
- Miller, J.W.; Rucker, R.B. Present Knowledge in Nutrition; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 273–287. [Google Scholar]
- Liepman, A.H.; Cavalier, D.M.; Lerouxel, O.; Keegstra, K. Cell Wall Structure, Biosynthesis and Assembly. Annual Plant Reviews Volume 25: Plant Cell Separation and Adhesion; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; pp. 8–39. [Google Scholar] [CrossRef]
- Maurino, V.G.; Engqvist MK, M. 2-Hydroxy acids in plant metabolism. In The Arabidopsis Book/American Society of Plant Biologists; American Society of Plant Biologists: Rockville, MD, USA, 2015; p. 13. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, X.; Tan, H.; Liao, Y.; Xu, P.; Kang, M.; Dong, F.; Yang, Z. Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. J. Agric. Food Chem. 2020, 68, 3415–3424. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, M.G.; Siddique, A.; Rosenthal, S.; E Marks, L. Interactions of lemon, sucrose and citric acid in enhancing citrus, sweet and sour flavors. Chem. Senses 2018, 43, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Vincken, J.P.; de Bruijn, W.J. Tea phenolics as prebiotics. Trends Food Sci. Technol. 2022, 127, 156–168. [Google Scholar] [CrossRef]
Steps | Temperature | Digestion Time |
---|---|---|
1 | 120 °C | 3 min |
2 | 160 °C | 3 min |
3 | 190 °C | 20 min |
Composition | Fresh Yongfu Fruit | Fresh Longsheng Fruit | Dried Yongfu Fruit |
---|---|---|---|
Total sugar | 2.88 ± 40.37 a | 3.16 ± 3.04 b | 4.28 ± 3.95 c |
Total dietary fiber | 34.97 ± 1.25 a | 34.12 ± 1.11 a | 41.99 ± 0.93 b |
Protein | 7.04 ± 0.01 a | 7.59 ± 0.038 b | 10.98 ± 0.029 c |
Soluble dietary fiber | 3.48 ± 0.19 a | 3.64 ± 0.23 a | 3.26 ± 0.24 a |
Ash | 2.42 ± 0.01 a | 2.43 ± 0.01 a | 3.99 ± 0.02 b |
Crude fat | 0.80 ± 0.003 a | 0.90 ± 0.003 b | 5.19 ± 0.02 c |
Mineral | Fresh Yongfu Fruit | Fresh Longsheng Fruit | Dried Yongfu Fruit |
---|---|---|---|
Ca | 1203.5 ± 84.64 a | 971.25 ± 48.62 b | 627.25 ± 45.09 c |
Mg | 2254.25 ± 134.95 a | 1746.25 ± 114.27 c | 1242 ± 95.48 b |
K | 13,656.5 ± 760.06 a | 10,675.25 ± 820.34 b | 8528.00 ± 689.76 c |
Zn | 22.1 ± 0.34 a | 22.83 ± 0.59 a | 17.20 ± 0.18 b |
Na | 14.83 ± 0.63 a | 20.46 ± 0.26 b | 11.03 ± 0.13 c |
Al | 4.75 ± 0.177 a | 9.41 ± 0.13 b | 6.07 ± 0.09 c |
Fe | 54.83 ± 1.10 a | 59.33 ± 1.40 b | 34.63 ± 0.22 c |
Cr | 0.34 ± 0.01 a | 0.22 ± 0.004 b | 0.12 ± 0.002 c |
Cu | 13.45 ± 0.31 a | 10.25 ± 0.24 b | 11.40 ± 0.08 c |
Se | 0.0088 ± 0.0005 a | 0.0073 ± 0.0005 b | 0.02 ± 0.00096 c |
Metabolite Class | Percentage (%) |
---|---|
Carboxylic acids and derivatives | 15.31 |
Fatty acyls | 9.8 |
Organooxygen compounds | 9.3 |
Benzene and substituted derivatives | 7.6 |
Prenol lipids | 4.0 |
Organonitrogen compounds | 2.5 |
Phenols | 2.5 |
Indoles and derivatives | 2.1 |
others | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yu, W.; Bi, M.; Zhang, Y.; Guan, Y.; Jiang, T. Comprehensive Nutrient Profiling and Untargeted Metabolomic Assessment of Siraitia grosvenorii from Different Regions and Varying Degrees of Processing. Appl. Sci. 2025, 15, 1020. https://doi.org/10.3390/app15031020
Liu Y, Yu W, Bi M, Zhang Y, Guan Y, Jiang T. Comprehensive Nutrient Profiling and Untargeted Metabolomic Assessment of Siraitia grosvenorii from Different Regions and Varying Degrees of Processing. Applied Sciences. 2025; 15(3):1020. https://doi.org/10.3390/app15031020
Chicago/Turabian StyleLiu, Yuqiang, Weiqian Yu, Mengfei Bi, Yuting Zhang, Yuan Guan, and Tiemin Jiang. 2025. "Comprehensive Nutrient Profiling and Untargeted Metabolomic Assessment of Siraitia grosvenorii from Different Regions and Varying Degrees of Processing" Applied Sciences 15, no. 3: 1020. https://doi.org/10.3390/app15031020
APA StyleLiu, Y., Yu, W., Bi, M., Zhang, Y., Guan, Y., & Jiang, T. (2025). Comprehensive Nutrient Profiling and Untargeted Metabolomic Assessment of Siraitia grosvenorii from Different Regions and Varying Degrees of Processing. Applied Sciences, 15(3), 1020. https://doi.org/10.3390/app15031020