Multimodal Neural Network Analysis of Single-Night Sleep Stages for Screening Obstructive Sleep Apnea
Abstract
:1. Introduction
- The development of deep learning models for the detection of OSA, insomnia, and depression using sleep stage data from wearable devices and patient-specific medical history.
- The construction of hypnodensity and hypnogram visualizations to enrich quantitative data obtained from wearable devices.
- The application of multimodal learning to analyze OSA in the context of its comorbidities.
2. Materials and Methods
2.1. Dataset
2.2. Sleep Stages
- For each patient, a probability matrix is computed where each row corresponds to an epoch and each column corresponds to a specific sleep stage. This matrix is initialized such that all elements are set to zero, and the stage for each epoch is then represented by setting the corresponding stage column to 1.
- Once the epoch-wise probability matrix is computed for each patient, a cumulative sum is performed along the time axis (rows of the matrix).
- The cumulative hypnodensity is then visualized as a polygon plot, where each polygon represents the cumulative probability of a sleep stage over time.
2.3. Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EHR | Electronic Health Records |
CNN-BiLSTM | Convolutional Neural Network with Bidirectional Long Short-Term Memory |
OSA | Obstructive Sleep Apnea |
NREM | Non-Rapid Eye Movement Sleep |
PSG | Polysomnography |
REM | Rapid Eye Movement Sleep |
WSC | Wisconsin Sleep Cohort |
References
- Lévy, P.; Kohler, M.; McNicholas, W.T.; Barbé, F.; McEvoy, R.D.; Somers, V.K.; Lavie, L.; Pépin, J.L. Obstructive sleep apnoea syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15015. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Ray, L.B.; Bujaki, B.; Parvaresh, A.; Palamarchuk, I.; De Koninck, J.; Montplaisir, J.; Nielsen, T.A. Using heart rate profiles during sleep as a biomarker of depression. BMC Psychiatry 2019, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Steiger, A.; Pawlowski, M. Depression and Sleep. Int. J. Mol. Sci. 2019, 20, 607. [Google Scholar] [CrossRef]
- Grandner, M.A.; Lujan, M.R.; Ghani, S.B. Sleep-tracking technology in scientific research: Looking to the future. Sleep 2021, 44, zsab071. [Google Scholar] [CrossRef]
- De Zambotti, M.; Goldstein, C.; Cook, J.; Menghini, L.; Altini, M.; Cheng, P.; Robillard, R. State of the science and recommendations for using wearable technology in sleep and circadian research. Sleep 2024, 47, zsad325. [Google Scholar] [CrossRef]
- Jaiswal, S.J.; Pawelek, J.B.; Warshawsky, S.; Quer, G.; Trieu, M.; Pandit, J.A.; Owens, R.L. Using New Technologies and Wearables for Characterizing Sleep in Population-based Studies. Curr. Sleep Med. Rep. 2024, 10, 82–92. [Google Scholar] [CrossRef]
- Lyall, L.M.; Sangha, N.; Zhu, X.; Lyall, D.M.; Ward, J.; Strawbridge, R.J.; Cullen, B.; Smith, D.J. Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: A machine learning approach in UK Biobank. J. Affect. Disord. 2023, 335, 83–94. [Google Scholar] [CrossRef]
- de Zambotti, M.; Rosas, L.; Colrain, I.M.; Baker, F.C. The sleep of the ring: Comparison of the ŌURA sleep tracker against polysomnography. Behav. Sleep Med. 2019, 17, 124–136. [Google Scholar] [CrossRef]
- Alkhodari, M.; Fraiwan, L. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings. Comput. Methods Programs Biomed. 2021, 200, 105940. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Peppard, P.E.; Nieto, F.J.; Hla, K.M. Burden of sleep apnea: Rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ Off. Publ. State Med Soc. Wis. 2009, 108, 246. [Google Scholar]
- Ramesh, J.; Keeran, N.; Sagahyroon, A.; Aloul, F. Towards Validating the Effectiveness of Obstructive Sleep Apnea Classification from Electronic Health Records Using Machine Learning. Healthcare 2021, 9, 1450. [Google Scholar] [CrossRef] [PubMed]
- Harlev, D.; Ravona-Springer, R.; Nuriel, Y.; Fruchter, E. Sleep monitoring using WatchPAT device to predict recurrence of major depression in patients at high risk for major depression disorder recurrence: A case report. Front. Psychiatry 2021, 12, 572660. [Google Scholar] [CrossRef]
- Rykov, Y.; Thach, T.Q.; Bojic, I.; Christopoulos, G.; Car, J. Digital biomarkers for depression screening with wearable devices: Cross-sectional study with machine learning modeling. JMIR MHealth UHealth 2021, 9, e24872. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.M.; Milstein, M.J. Chapter 17—Sleep Disorders. In Kaufman’s Clinical Neurology for Psychiatrists, 17th ed.; Kaufman, D.M., Milstein, M.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2013; pp. 365–396. [Google Scholar] [CrossRef]
- Carskadon, M.A.; Rechtschaffen, A. Chapter 116—Monitoring and Staging Human Sleep. In Principles and Practice of Sleep Medicine, 4th ed.; Kryger, M.H., Roth, T., Dement, W.C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2005; pp. 1359–1377. [Google Scholar] [CrossRef]
- Stephansen, J.B.; Olesen, A.N.; Olsen, M.; Ambati, A.; Leary, E.B.; Moore, H.E.; Carrillo, O.; Lin, L.; Han, F.; Yan, H.; et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018, 9, 5229. [Google Scholar] [CrossRef]
- Nutt, D.; Wilson, S.; Paterson, L. Sleep disorders as core symptoms of depression. Dialogues Clin. Neurosci. 2008, 10, 329–336. [Google Scholar] [CrossRef] [PubMed]
- van der Woerd, C.; van Gorp, H.; Dujardin, S.; Sastry, M.; Garcia Caballero, H.; van Meulen, F.; van den Elzen, S.; Overeem, S.; Fonseca, P. Studying sleep: Towards the identification of hypnogram features that drive expert interpretation. Sleep 2024, 47, zsad306. [Google Scholar] [CrossRef]
- Huang, W.C.; Lee, P.L.; Liu, Y.T.; Chiang, A.A.; Lai, F. Support vector machine prediction of Obstructive Sleep Apnea in a large-scale Chinese clinical sample. Sleep 2020, 43, zsz295. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Luong, M.T. Effective approaches to attention-based neural machine translation. arXiv 2015, arXiv:1508.04025. [Google Scholar] [CrossRef]
- Alkhodari, M.; Khandoker, A.H.; Jelinek, H.F.; Karlas, A.; Soulaidopoulos, S.; Arsenos, P.; Doundoulakis, I.; Gatzoulis, K.A.; Tsioufis, K.; Hadjileontiadis, L.J. Circadian assessment of heart failure using explainable deep learning and novel multi-parameter polar images. Comput. Methods Programs Biomed. 2024, 248, 108107. [Google Scholar] [CrossRef]
- Alkhodari, M.; Hadjileontiadis, L.J.; Khandoker, A.H. Identification of Congenital Valvular Murmurs in Young Patients Using Deep Learning-Based Attention Transformers and Phonocardiograms. IEEE J. Biomed. Health Informatics 2024, 28, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhao, B.; Jin, X.; Xi, W.; Yang, J.; Yang, L.; Ma, X. Sleep efficiency may predict depression in a large population-based study. Front. Psychiatry 2022, 13, 838907. [Google Scholar] [CrossRef] [PubMed]
- Brock, M.S.; Mysliwiec, V. Comorbid insomnia and sleep apnea: A prevalent but overlooked disorder. Sleep Breath. 2018, 22, 1–3. [Google Scholar] [CrossRef]
- Björnsdóttir, E.; Janson, C.; Sigurdsson, J.F.; Gehrman, P.; Perlis, M.; Juliusson, S.; Arnardottir, E.S.; Kuna, S.T.; Pack, A.I.; Gislason, T.; et al. Symptoms of insomnia among patients with Obstructive Sleep Apnea before and after two years of positive airway pressure treatment. Sleep 2013, 36, 1901–1909. [Google Scholar] [CrossRef]
- Ong, J.C.; Crawford, M.R. Insomnia and Obstructive Sleep Apnea. Sleep Med. Clin. 2013, 8, 389–398. [Google Scholar] [CrossRef]
- Luyster, F.S.; Buysse, D.J.; Strollo, P.J. Comorbid insomnia and Obstructive Sleep Apnea: Challenges for clinical practice and research. J. Clin. Sleep Med. 2010, 6, 196–204. [Google Scholar] [CrossRef]
- Janssen, H.C.; Venekamp, L.N.; Peeters, G.A.; Pijpers, A.; Pevernagie, D.A. Management of insomnia in sleep-disordered breathing. Eur. Respir. Rev. 2019, 28, 190080. [Google Scholar] [CrossRef]
- Mendes, M.S.; dos Santos, J.M. Insomnia as an expression of Obstructive Sleep Apnea syndrome–the effect of treatment with nocturnal ventilatory support. Rev. Port. Pneumol. (Engl. Ed.) 2015, 21, 203–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Folarin, A.A.; Sun, S.; Cummins, N.; Bendayan, R.; Ranjan, Y.; Rashid, Z.; Conde, P.; Stewart, C.; Laiou, P.; et al. Relationship between major depression symptom severity and sleep collected using a wristband wearable device: Multicenter longitudinal observational study. JMIR MHealth UHealth 2021, 9, e24604. [Google Scholar] [CrossRef]
- Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: State of the art. Sleep Med. Rev. 2013, 17, 377–390. [Google Scholar] [CrossRef]
- Hein, M.; Wacquier, B.; Conenna, M.; Lanquart, J.P.; Point, C. Cardiovascular Outcome in Patients with Major Depression: Role of Obstructive Sleep Apnea Syndrome, Insomnia Disorder, and COMISA. Life 2024, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, T.Y.; Choi, E.J.; Lee, M.; Kim, W.; Lee, S.A. Restless legs syndrome in patients with Obstructive Sleep Apnea: Association between apnea severity and symptoms of depression, insomnia, and daytime sleepiness. Sleep Med. 2024, 117, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Quevedo-Blasco, R.; Díaz-Román, A.; Quevedo-Blasco, V.J. Associations between Sleep, Depression, and Cognitive Performance in Adolescence. Eur. J. Investig. Heal. Psychol. Educ. 2023, 13, 501–511. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, N.; Shoeb, A.; Stephens, P.; Kharbouch, A.; Shimol, D.B.; Burkart, J.; Ghoreyshi, A.; Myers, L. Deep learning for automated sleep staging using instantaneous heart rate. Npj Digit. Med. 2020, 3, 106. [Google Scholar] [CrossRef]
- Birrer, V.; Elgendi, M.; Lambercy, O.; Menon, C. Evaluating reliability in wearable devices for sleep staging. Npj Digit. Med. 2024, 7, 74. [Google Scholar] [CrossRef]
- Christensen, J.A.E.; Carrillo, O.; Leary, E.B.; Peppard, P.E.; Young, T.; Sorensen, H.B.D.; Jennum, P.; Mignot, E. Sleep stage transitions during polysomnographic recordings as diagnostic features of type 1 narcolepsy. Sleep Med. 2015, 16, 1558–1566. [Google Scholar] [CrossRef]
- Bubbico, G.; Di Iorio, A.; Lauriola, M.; Sepede, G.; Salice, S.; Spina, E.; Brondi, G.; Esposito, R.; Perrucci, M.G.; Tartaro, A. Subjective Cognitive Decline and Nighttime Sleep Alterations, a Longitudinal Analysis. Front. Aging Neurosci. 2019, 11, 142. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Z.; Li, H.; Yang, J.; Ma, X.; Yan, B. Sleep architecture and the incidence of depressive symptoms in middle-aged and older adults: A community-based study. J. Affect. Disord. 2024, 352, 222–228. [Google Scholar] [CrossRef]
- Thakre, T.P.; Kulkarni, H.; Adams, K.S.; Mischel, R.; Hayes, R.; Pandurangi, A. Polysomnographic identification of anxiety and depression using deep learning. J. Psychiatr. Res. 2022, 150, 54–63. [Google Scholar] [CrossRef]
- Rykov, Y.G.; Ng, K.P.; Patterson, M.D.; Gangwar, B.A.; Kandiah, N. Predicting the Severity of Mood and Neuropsychiatric Symptoms from Digital Biomarkers Using Wearable Physiological Data and Deep Learning. Comput. Biol. Med. 2024, 180, 108959. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Hiratsuka, T.; Hasegawa, K.; Watanabe, K.; Obara, Y.; Kariya, N.; Shinba, T.; Matsui, T. Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices. Sensors 2023, 23, 3867. [Google Scholar] [CrossRef] [PubMed]
- Markov, K.; Elgendi, M.; Menon, C. EEG-based Headset Sleep Wearable Devices. Npj Biosensing 2024, 1, 12. [Google Scholar] [CrossRef]
- Moussa, M.M.; Alzaabi, Y.; Khandoker, A. ECG, EEG, Breathing Signals, and Machine Learning: Computer-Aided Detection of Obstructive Sleep Apnea Syndrome and Depression. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar] [CrossRef]
- Lang, C.J.; Appleton, S.L.; Vakulin, A.; McEvoy, R.D.; Vincent, A.D.; Wittert, G.A.; Martin, S.A.; Grant, J.F.; Taylor, A.W.; Antic, N.; et al. Associations of Undiagnosed Obstructive Sleep Apnea and Excessive Daytime Sleepiness with Depression: An Australian Population Study. J. Clin. Sleep Med. 2017, 13, 575–582. [Google Scholar] [CrossRef]
- Bi, K.; Chen, S. Sleep Profiles as a Longitudinal Predictor for Depression Magnitude and Variability Following the Onset of COVID-19. J. Psychiatr. Res. 2022, 147, 159–165. [Google Scholar] [CrossRef]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, Rationale, and Methods. Sleep 1997, 20, 1077–1085. [Google Scholar] [CrossRef]
- Vo, T.N.; Kats, A.M.; Langsetmo, L.; Taylor, B.C.; Schousboe, J.T.; Redline, S.; Kunisaki, K.M.; Stone, K.L.; Ensrud, K.E.; for the Osteoporotic Fractures in Men (MrOS) Study Research Group. Association of Sleep-Disordered Breathing with Total Healthcare Costs and Utilization in Older Men: The Outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. Sleep 2020, 43, zsz209. [Google Scholar] [CrossRef]
- Dean, D.A., II; Wang, R.; Jacobs, D.R., Jr.; Duprez, D.; Punjabi, N.M.; Zee, P.C.; Shea, S.; Watson, K.; Redline, S. A Systematic Assessment of the Association of Polysomnographic Indices with Blood Pressure: The Multi-Ethnic Study of Atherosclerosis (MESA). Sleep 2015, 38, 587–596. [Google Scholar] [CrossRef]
Feature | Description | Type |
---|---|---|
Demographics and General Habits | ||
Age | Measured in years | Numeric |
Gender | Male or Female | Nominal |
Body Mass Index | Measures height and weight ratio in kg/m2 | Numeric |
Alcohol | Number of drinks weekly | Numeric |
Caffeine | Number of drinks weekly | Numeric |
Smoking | Indicates yes or no | Nominal |
Health Status | ||
Excessive daytime sleepiness | Feeling of sleepiness and fatigue | Nominal |
Epworth Sleepiness Scale | Likelihood of dozing off during day | Nominal |
State Anxiety Score (STAI-1) | Quantifies current anxiety | Numeric |
Trait Anxiety Score (STAI-2) | Quantifies general anxiety | Numeric |
Cardiovascular Conditions | Indicates present or absent | Nominal |
Diabetes Conditions | Indicates present or absent | Nominal |
Thyroid Conditions | Indicates present or absent | Nominal |
Arthritis Conditions | Indicates present or absent | Nominal |
Asthma Conditions | Indicates present or absent | Nominal |
Emphysema Conditions | Indicates present or absent | Nominal |
Stroke Conditions | Indicates present or absent | Nominal |
Medication Status | ||
Depression Medication | Indicates taking or not | Nominal |
Anxiety Medication | Indicates taking or not | Nominal |
Cholesterol Medication | Indicates taking or not | Nominal |
Hypertension Medication | Indicates taking or not | Nominal |
Diabetes Medication | Indicates taking or not | Nominal |
Thyroid Medication | Indicates taking or not | Nominal |
Asthma Medication | Indicates taking or not | Nominal |
Narcotics Medication | Indicates taking or not | Nominal |
Sedative Medication | Indicates taking or not | Nominal |
Stimulant Medication | Indicates taking or not | Nominal |
Antihistamines Medication | Indicates taking or not | Nominal |
Androgen Medication | Indicates taking or not | Nominal |
Decongestants Medication | Indicates taking or not | Nominal |
Sleep Measures | ||
REM Latency | Time to reach first REM stage | Numeric |
Wake After Sleep Onset | Wakefulness after first falling asleep | Numeric |
Sleep Latency | Time to fall asleep | Numeric |
REM Sleep Duration | Time in REM stage | Numeric |
Total Sleep Duration | Time in bed asleep | Numeric |
Sleep Efficiency | Percentage of time spent asleep while in bed | Numeric |
NREM Sleep Duration | Time in NREM stage | Numeric |
REM Sleep Percentage | Percentage of time spent asleep while in REM | Numeric |
N1 Sleep Percentage | Percentage of time spent asleep while in N1 | Numeric |
N2 Sleep Percentage | Percentage of time spent asleep while in N2 | Numeric |
N34 Sleep Percentage | Percentage of time spent asleep while in N3 and N4 | Numeric |
Labels | ||
OSA | Indicates present or absent | Nominal |
Insomnia | Indicates present or absent | Nominal |
Depression | Indicates present or absent | Nominal |
Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | F1-Score (%) |
---|---|---|---|---|
OSA Classification | ||||
Hypnodensity | 54.20 | 79.70 | 21.00 | 57.80 |
Hypnodensity + | 63.10 | 74.20 | 48.70 | 69.40 |
Sleep + Medical | ||||
Hypnograms | 54.00 | 79.70 | 20.50 | 57.80 |
Hypnograms + | 62.80 | 74.10 | 48.10 | 69.30 |
Sleep + Medical | ||||
Insomnia Classification | ||||
Hypnograms + | 54.90 | 54.60 | 55.10 | 53.90 |
Sleep + Medical | ||||
Depression Classification | ||||
Hypnograms + | 82.60 | 31.20 | 96.10 | 42.80 |
Sleep + Medical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramesh, J.; Solatidehkordi, Z.; Sagahyroon, A.; Aloul, F. Multimodal Neural Network Analysis of Single-Night Sleep Stages for Screening Obstructive Sleep Apnea. Appl. Sci. 2025, 15, 1035. https://doi.org/10.3390/app15031035
Ramesh J, Solatidehkordi Z, Sagahyroon A, Aloul F. Multimodal Neural Network Analysis of Single-Night Sleep Stages for Screening Obstructive Sleep Apnea. Applied Sciences. 2025; 15(3):1035. https://doi.org/10.3390/app15031035
Chicago/Turabian StyleRamesh, Jayroop, Zahra Solatidehkordi, Assim Sagahyroon, and Fadi Aloul. 2025. "Multimodal Neural Network Analysis of Single-Night Sleep Stages for Screening Obstructive Sleep Apnea" Applied Sciences 15, no. 3: 1035. https://doi.org/10.3390/app15031035
APA StyleRamesh, J., Solatidehkordi, Z., Sagahyroon, A., & Aloul, F. (2025). Multimodal Neural Network Analysis of Single-Night Sleep Stages for Screening Obstructive Sleep Apnea. Applied Sciences, 15(3), 1035. https://doi.org/10.3390/app15031035