Life Cycle Sustainability Assessment of Microbially Induced Calcium Carbonate Precipitation (MICP) Soil Improvement Techniques
Abstract
:1. Introduction
2. Experimental Setup
3. Methods
3.1. Goal and Scope Definition
3.2. Life Cycle Inventory Development
3.2.1. Foreground Data
3.2.2. Background Data
3.2.3. MICP Process Emissions
3.3. Life Cycle Impact Assessment
3.4. Life Cycle Costing
3.5. Social Cost of Greenhouse Gas Emissions
4. Results
4.1. Effects of Increasing Cementation Treatments
4.2. Impacts and Benefits of Ammonium Rinsing
4.3. Comparison of MICP Treatment Approaches
5. Discussion
5.1. Implications for Field-Scale Implementation
5.2. Study Limitations and Recommendations for Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeJong, J.T.; Fritzges, M.B.; Nüsslein, K. Microbially Induced Cementation to Control Sand Response to Undrained Shear. J. Geotech. Geoenviron. Eng. 2006, 132, 1381–1392. [Google Scholar] [CrossRef]
- Wang, H.-L.; Yin, Z.-Y. Unconfined compressive strength of bio-cemented sand: State-of-the-art review and MEP-MC-based model development. J. Clean. Prod. 2021, 315, 128205. [Google Scholar] [CrossRef]
- Ma, G.; Xiao, Y.; Fan, W.; Chu, J.; Liu, H. Mechanical properties of biocement formed by microbially induced carbonate precipitation. Acta Geotech. 2022, 17, 4905–4919. [Google Scholar] [CrossRef]
- DeJong, J.T.; Gomez, M.G.; San Pablo, A.C.; Graddy, C.M.R.; Nelson, D.C.; Lee, M.; Ziotopoulou, K.; El Kortbawi, M.; Montoya, B.; Kwon, T.H. State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation. In Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering (Sydney), Sydney, Australia, 1–5 May 2022. [Google Scholar]
- Fujita, Y.; Taylor, J.L.; Gresham, T.L.T.; Delwiche, M.E.; Colwell, F.S.; McLing, T.L.; Petzke, L.M.; Smith, R.W. Stimulation of Microbial Urea Hydrolysis in Groundwater to Enhance Calcite Precipitation. Environ. Sci. Technol. 2008, 42, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- Minto, J.M.; MacLachlan, E.; El Mountassir, G.; Lunn, R.J. Rock fracture grouting with microbially induced carbonate precipitation. Water Resour. Res. 2016, 52, 8827–8844. [Google Scholar] [CrossRef]
- Phillips, A.J.; Cunningham, A.B.; Gerlach, R.; Hiebert, R.; Hwang, C.; Lomans, B.P.; Westrich, J.; Mantilla, C.; Kirksey, J.; Esposito, R.; et al. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study. Environ. Sci. Technol. 2016, 50, 4111–4117. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Liu, H.; Xiao, Y.; Stuedlein, A.W.; Evans, T.M. Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn. Earthq. Eng. 2018, 107, 9–19. [Google Scholar] [CrossRef]
- Naeimi, M.; Chu, J. Biocementation of sand dike against erosion due to overtopping. Acta Geotech. 2023, 18, 6745–6757. [Google Scholar] [CrossRef]
- Ferris, F.G.; Stehmeier, L.G.; Kantzas, A.; Mourits, F.M. Bacteriogenic Mineral Plugging. J. Can. Pet. Technol. 1996, 35, 9. [Google Scholar] [CrossRef]
- Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of Concrete Using Microorganisms. ACI Mater. J. 2001, 98, 3–9. [Google Scholar] [CrossRef]
- Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Fujita, Y.; Redden, G.D.; Ingram, J.C.; Cortez, M.M.; Ferris, F.G.; Smith, R.W. Strontium incorporation into calcite generated by bacterial ureolysis. Geochim. Cosmochim. Acta 2004, 68, 3261–3270. [Google Scholar] [CrossRef]
- Burbank, M.B.; Weaver, T.J.; Green, T.L.; Williams, B.C.; Crawford, R.L. Precipitation of Calcite by Indigenous Microorganisms to Strengthen Liquefiable Soils. Geomicrobiol. J. 2011, 28, 301–312. [Google Scholar] [CrossRef]
- Tobler, D.J.; Cuthbert, M.O.; Greswell, R.B.; Riley, M.S.; Renshaw, J.C.; Handley-Sidhu, S.; Phoenix, V.R. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochim. Cosmochim. Acta 2011, 75, 3290–3301. [Google Scholar] [CrossRef]
- Gat, D.; Ronen, Z.; Tsesarsky, M. Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation. Environ. Sci. Technol. 2016, 50, 616–624. [Google Scholar] [CrossRef]
- Gomez, M.G.; Anderson, C.M.; Graddy, C.M.R.; DeJong, J.T.; Nelson, D.C.; Ginn, T.R. Large-Scale Comparison of Bioaugmentation and Biostimulation Approaches for Biocementation of Sands. J. Geotech. Geoenviron. Eng. 2017, 143, 04016124. [Google Scholar] [CrossRef]
- Saitis, G.; Karkani, A.; Koutsopoulou, E.; Tsanakas, K.; Kawasaki, S.; Evelpidou, N. Beachrock Formation Mechanism Using Multiproxy Experimental Data from Natural and Artificial Beachrocks: Insights for a Potential Soft Engineering Method. J. Mar. Sci. Eng. 2022, 10, 87. [Google Scholar] [CrossRef]
- San Pablo, A.C.M.; Lee, M.; Graddy, C.M.R.; Kolbus, C.M.; Khan, M.; Zamani, A.; Martin, N.; Acuff, C.; DeJong, J.T.; Gomez, M.G.; et al. Meter-Scale Biocementation Experiments to Advance Process Control and Reduce Impacts: Examining Spatial Control, Ammonium By-Product Removal, and Chemical Reductions. J. Geotech. Geoenviron. Eng. 2020, 146, 04020125. [Google Scholar] [CrossRef]
- Paerl, H.W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 1997, 42 Pt 2, 1154–1165. [Google Scholar] [CrossRef]
- U.S. EPA (Environmental Protection Agency). Aquatic Life Ambient Water Quality Criteria for Ammonia—Freshwater; EPA Publication No. 822-R-13-001; U.S. EPA (Environmental Protection Agency): Washington, DC, USA, 2013; pp. 1–255.
- Oregon Department of Human Services (ODHS) Environmental Toxicology Section. Technical Bulletin-Health Effects Information: Ammonia; Oregon Department of Human Services (ODHS) Environmental Toxicology Section: Portland, OR, USA, 2000.
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, 435, 1–62. [Google Scholar]
- Lee, M.; Gomez, M.G.; San Pablo, A.C.M.; Kolbus, C.M.; Graddy, C.M.R.; DeJong, J.T.; Nelson, D.C. Investigating Ammonium By-product Removal for Ureolytic Bio-cementation Using Meter-scale Experiments. Sci. Rep. 2019, 9, 18313. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, L.A. Bio-Mediated Ground Improvement: From Laboratory Experiment to Pilot Applications. Geo-Frontiers 2011, 2011, 4099–4108. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; McMillan, L.A.; Handley-Sidhu, S.; Riley, M.S.; Tobler, D.J.; Phoenix, V.R. A Field and Modeling Study of Fractured Rock Permeability Reduction Using Microbially Induced Calcite Precipitation. Environ. Sci. Technol. 2013, 47, 13637–13643. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.K.; Khodadadi, T.H.; Chester, M.; Kavazanjian, E. Hotspot Life Cycle Assessment for Environmental Impacts of EICP for Ground Improvement. Geo-Congress 2020, 2020, 321–329. [Google Scholar] [CrossRef]
- Raymond, A.J.; Kendall, A.; DeJong, J.T. Life Cycle Sustainability Assessment (LCSA): A Research Evaluation Tool for Emerging Geotechnologies. Geo-Congress 2020, 2020, 330–339. [Google Scholar] [CrossRef]
- Faruqi, A.; Hall, C.A.; Kendall, A. Sustainability of bio-mediated and bio-inspired ground improvement techniques for geologic hazard mitigation: A systematic literature review. Front. Earth Sci. 2023, 11, 1211574. [Google Scholar] [CrossRef]
- DeMelo, D.L.; Kendall, A.; DeJong, J.T. Evaluation of life cycle assessment (LCA) use in geotechnical engineering. Environ. Res. Infrastruct. Sustain. 2024, 4, 012001. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO (International Organization for Standardization): Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO (International Organization for Standardization): Geneva, Switzerland, 2006.
- ISO 15686-5:2017; Buildings and Constructed Assets—Service Life Planning—Part 5: Life-Cycle Costing. ISO (International Organization for Standardization): Geneva, Switzerland, 2007.
- ASTM E917-17; Standard Practice for Measuring Life-Cycle Costs of Buildings and Building Systems. ASTM International: West Conshohocken, PA, USA, 2017.
- Federal Highway Administration (FHWA). Life-Cycle Cost Analysis in Pavement Design. Pavement Division Interim Technical Bulletin; FHWA-SA-98-079; US Department of Transpartation: Washington, DC, USA, 1998.
- Neugebauer, S.; Martinez-Blanco, J.; Scheumann, R.; Finkbeiner, M. Enhancing the practical implementation of life cycle sustainability assessment—Proposal of a Tiered approach. J. Clean. Prod. 2015, 102, 165–176. [Google Scholar] [CrossRef]
- BS EN 15978; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. British Standards Institution: London, UK, 2011.
- EUR 24708 EN; International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance. JRC-IES (European Commission—Joint Research Centre—Institute for Environment and Sustainability): Luxembourg, 2010.
- Clift, R.; Frischknecht, R.; Huppes, G.; Tillman, A.-M.; Weidema, B. A summary of the results of the Working Group on Inventory Enhancement. SETAC-Europe News 1999, 10, 14. [Google Scholar]
- Ecoinvent. Ecoinvent 3.5. 2018. Available online: https://support.ecoinvent.org/ecoinvent-version-3.5 (accessed on 1 January 2020).
- thinkstep. GaBi ts 8: System Software and Databases for Life Cycle Engineering. 2018. Available online: https://www.openlca.org/gabi-lca-databases-2018-sp36/ (accessed on 1 January 2020).
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data: Summary of No and N2O Measurement Data. Glob. Biogeochem. Cycles 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- De Klein, C. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Khalil, K.; Mary, B.; Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 2004, 36, 687–699. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (Ed.) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Bare, J.C. Traci.: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. J. Ind. Ecol. 2002, 6, 49–78. [Google Scholar] [CrossRef]
- Circle of Blue. Price of Water 2019: Even Without Federal Infrastructure Deal, Cities Continue to Invest. 2019. Available online: https://www.circleofblue.org/2019/world/2019-price-of-water/ (accessed on 15 January 2020).
- EIA (US Energy Information Administration). Monthly Energy Review—May 2020; US Energy Information Administration: Washington, DC, USA, 2020.
- IWG (Interagency Working Group) on Social Cost of Greenhouse Gases. Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866; IWG (Interagency Working Group): Washington, DC, USA, 2016. [Google Scholar]
- Marten, A.L.; Kopits, E.A.; Griffiths, C.W.; Newbold, S.C.; Wolverton, A. Incremental CH4 and N2O mitigation benefits consistent with the US Government’s SC-CO2 estimates. Clim. Policy 2015, 15, 272–298, Erratum in Clim. Policy 2015, 15, 678–679. [Google Scholar] [CrossRef]
- Lee, M.; Gomez, M.G. Removal of Ammonium By-products Produced During Biocementation Soil Improvement Using Rinse Injection Strategies. Soil Use Manag. 2024, 40, e12984. [Google Scholar] [CrossRef]
- Lin, P.H.; Horng, R.Y.; Hsu, S.F.; Chen, S.S.; Ho, C.H. A feasibility study of ammonia recovery from coking wastewater by coupled operation of a membrane contactor and membrane distillation. Int. J. Environ. Res. Public Health 2018, 15, 441. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Chen, L.H.; Lin, Y.J.; Yu, C.P.; Ma, H.W.; Chiang, P.C. Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: A review. J. Clean. Prod. 2021, 309, 127369. [Google Scholar] [CrossRef]
- Laurent, A.; Weidema, B.P.; Bare, J.; Liao, X.; Maia De Souza, D.; Pizzol, M.; Sala, S.; Schreiber, H.; Thonemann, N.; Verones, F. Methodological review and detailed guidance for the life cycle interpretation phase. J. Ind. Ecol. 2020, 24, 986–1003. [Google Scholar] [CrossRef] [PubMed]
- Raymond, A.J.; Kendall, A.; DeJong, J.T.; Kavazanjian, E.; Woolley, M.A.; Martin, K.K. Life Cycle Sustainability Assessment of Fugitive Dust Control Methods. J. Constr. Eng. Manag. 2021, 147, 04020181. [Google Scholar] [CrossRef]
Column 1: Stimulation (High Ureolytic Rate) | Column 2: Stimulation (Low Ureolytic Rate) | Column 3: Augmentation | ||||
---|---|---|---|---|---|---|
C1 | C1 * | C2 | C2 * | C3 | C3 * | |
Inputs | ||||||
Materials | ||||||
Calcium chloride (kg) | 1.05 × 10 | 1.24 × 10 | 7.42 | 9.41 | 1.76 × 10 | 1.96 × 10 |
Urea (kg) | 7.02 | 7.02 | 5.38 | 5.38 | 9.55 | 9.55 |
Ammonium chloride (kg) | 2.73 | 2.73 | 2.66 | 2.66 | 4.25 × 10−1 | 4.25 × 10−1 |
Ammonium sulfate (kg) | -- | -- | -- | -- | 4.57 × 10−2 | 4.57 × 10−2 |
Sodium acetate (kg) | 5.24 | 5.24 | 4.61 | 4.61 | 3.68 | 3.68 |
Sodium chloride (kg) | -- | -- | -- | -- | 4.79 | 4.79 |
Sodium hydroxide (kg) | 5.81 × 10−1 | 5.81 × 10−1 | 5.81 × 10−1 | 5.81 × 10−1 | -- | -- |
Tris base (kg) | -- | -- | -- | -- | 7.20 × 10−2 | 7.20 × 10−2 |
Yeast extract (kg) | 1.66 × 10−1 | 1.66 × 10−1 | 2.35 × 10−2 | 2.35 × 10−2 | 9.14 × 10−2 | 9.14 × 10−2 |
S. pasteurii (cells) | -- | -- | -- | -- | 7.75 × 1012 | 7.75 × 1012 |
Water (L) | 9.06 × 102 | 9.96 × 102 | 7.96 × 102 | 8.86 × 102 | 1.17 × 103 | 1.26 × 103 |
Energy | ||||||
Electricity (MJ) | 3.08 × 10 | 3.24 × 10 | 2.70 × 10 | 2.87 × 10 | 5.29 × 10 | 5.45 × 10 |
Outputs | ||||||
Inorganic emissions to air (kg) | ||||||
Ammonia (NH3) | 1.52 × 10−2 | 1.77 × 10−2 | 1.14 × 10−2 | 1.38 × 10−2 | 2.23 × 10−2 | 2.47 × 10−2 |
Carbon dioxide (CO2) | 3.66 × 10 | 3.82 × 10 | 3.03 × 10 | 3.19 × 10 | 4.28 × 10 | 4.44 × 10 |
Carbon monoxide (CO) | 2.71 × 10−2 | 2.93 × 10−2 | 2.20 × 10−2 | 2.42 × 10−2 | 3.37 × 10−2 | 3.59 × 10−2 |
Methane (CH4) | 1.23 × 10−1 | 1.27 × 10−1 | 1.01 × 10−1 | 1.05 × 10−1 | 1.39 × 10−1 | 1.42 × 10−1 |
Nitrogen monoxide (NO) | 6.95 × 10−3 | 1.78 × 10−3 | 6.67 × 10−3 | 1.06 × 10−3 | 6.94 × 10−3 | 2.66 × 10−3 |
Nitrogen oxides (NOx) | 5.37 × 10−2 | 5.70 × 10−2 | 4.45 × 10−2 | 4.78 × 10−2 | 6.44 × 10−2 | 6.77 × 10−2 |
Nitrous oxide (N2O) | 1.52 × 10−2 | 5.63 × 10−3 | 1.42 × 10−2 | 3.80 × 10−3 | 1.58 × 10−2 | 7.95 × 10−3 |
Sulfur dioxide (SO2) | 7.48 × 10−2 | 8.06 × 10−2 | 6.28 × 10−2 | 6.86 × 10−2 | 8.19 × 10−2 | 8.77 × 10−2 |
Particulates to air (kg) | ||||||
Dust (PM2.5) | 1.71 × 10−2 | 1.84 × 10−2 | 1.48 × 10−2 | 1.60 × 10−2 | 1.44 × 10−2 | 1.57 × 10−2 |
Dust (PM10) | 1.25 × 10−2 | 1.36 × 10−2 | 1.05 × 10−2 | 1.17 × 10−2 | 1.23 × 10−2 | 1.34 × 10−2 |
Inorganic emissions to water (kg) | ||||||
Ammonia (NH3) | 6.87 × 10−2 | 6.87 × 10−2 | 6.22 × 10−2 | 6.23 × 10−2 | 3.73 × 10−2 | 3.74 × 10−2 |
Ammonium (NH4+) | 4.12 × 10−1 | 1.03 × 10−1 | 3.96 × 10−1 | 6.09 × 10−2 | 4.11 × 10−1 | 1.56 × 10−1 |
Nitrate (NO3−) | 4.00 × 10−1 | 1.09 × 10−1 | 3.82 × 10−1 | 6.64 × 10−2 | 4.01 × 10−1 | 1.60 × 10−1 |
Nitrogen (N) | 1.30 × 10−3 | 1.53 × 10−3 | 9.56 × 10−4 | 1.18 × 10−3 | 2.02 × 10−3 | 2.24 × 10−3 |
Phosphate (PO43−) | 1.83 × 10−2 | 2.02 × 10−2 | 1.51 × 10−2 | 1.70 × 10−2 | 1.85 × 10−2 | 2.04 × 10−2 |
Column 1: Stimulation (High Ureolytic Rate) | Column 2: Stimulation (Low Ureolytic Rate) | Column 3: Augmentation | |
---|---|---|---|
Scenario 1 (ΔVs = 150 m/s) | |||
Primary Energy (MJ) | 4.52 × 107 | 3.74 × 107 | 4.76 × 107 |
Global Warming Potential (kg CO2 eq.) | 2.61 × 106 | 2.14 × 106 | 2.84 × 106 |
Scenario 2 (ΔVs = 400 m/s) | |||
Primary Energy (MJ) | 7.82 × 107 | 6.63 × 107 | -- |
Global Warming Potential (kg CO2 eq.) | 4.55 × 106 | 3.79 × 106 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymond, A.J.; DeJong, J.T.; Gomez, M.G.; Kendall, A.; San Pablo, A.C.M.; Lee, M.; Graddy, C.M.R.; Nelson, D.C. Life Cycle Sustainability Assessment of Microbially Induced Calcium Carbonate Precipitation (MICP) Soil Improvement Techniques. Appl. Sci. 2025, 15, 1059. https://doi.org/10.3390/app15031059
Raymond AJ, DeJong JT, Gomez MG, Kendall A, San Pablo ACM, Lee M, Graddy CMR, Nelson DC. Life Cycle Sustainability Assessment of Microbially Induced Calcium Carbonate Precipitation (MICP) Soil Improvement Techniques. Applied Sciences. 2025; 15(3):1059. https://doi.org/10.3390/app15031059
Chicago/Turabian StyleRaymond, Alena J., Jason T. DeJong, Michael G. Gomez, Alissa Kendall, Alexandra C. M. San Pablo, Minyong Lee, Charles M. R. Graddy, and Douglas C. Nelson. 2025. "Life Cycle Sustainability Assessment of Microbially Induced Calcium Carbonate Precipitation (MICP) Soil Improvement Techniques" Applied Sciences 15, no. 3: 1059. https://doi.org/10.3390/app15031059
APA StyleRaymond, A. J., DeJong, J. T., Gomez, M. G., Kendall, A., San Pablo, A. C. M., Lee, M., Graddy, C. M. R., & Nelson, D. C. (2025). Life Cycle Sustainability Assessment of Microbially Induced Calcium Carbonate Precipitation (MICP) Soil Improvement Techniques. Applied Sciences, 15(3), 1059. https://doi.org/10.3390/app15031059