Hydraulic Resistance Device for Force, Power, and Force–Velocity–Power Profile Assessment During Resisted Sprints with Different Overloads †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.4. Data Acquisition and Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrakos, G.; Morin, J.B.; Egan, B. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review. Sports Med. 2016, 46, 381–400. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef]
- Ward, C.; Catháin, C.; Chéilleachair, N.N.; Grassick, S.; Kelly, D.T. Does Resisted Sprint Training Improve the Sprint Performance of Field-Based Invasion Team Sport Players? A Systematic Review and Meta-analysis. Sports Med. 2023, 54, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Zabaloy, S.; Freitas, T.T.; Pareja-Blanco, F.; Alcaraz, P.E.; Loturco, I. Narrative Review on the Use of Sled Training to Improve Sprint Performance in Team Sport Athletes. Strength Cond. J. 2023, 45, 13–28. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; van den Tillaar, R.; Castaño-Zambudio, A.; Gleadhill, S.; Nagahara, R. Understanding sprint phase-specific training stimuli: A cluster analysis approach to overload conditions. Front. Sports Act. Living 2024, 6, 1510379. [Google Scholar] [CrossRef] [PubMed]
- Leyva, W.D.; Wong, M.A.; Brown, L.E. Resisted and Assisted Training for Sprint Speed: A Brief Review. J. Phys. Fit. Med. Treat. Sports 2017, 1, 555554. [Google Scholar]
- Stavridis, I.; Economou, T.; Walker, J.; Bissas, A. Sprint mechanical characteristics of sub-elite and recreational sprinters. J. Phys. Educ. 2022, 22, 1126–1133. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Cahill, M.J.; Oliver, J.L.; Cronin, J.B.; Clark, K.; Cross, M.R.; Lloyd, R.S.; Lee, J.E. Influence of Resisted Sled-Pull Training on the Sprint Force-Velocity Profile of Male High-School Athletes. J. Strength Cond. Res. 2020, 34, 2751–2759. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Sleivert, G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005, 35, 213–234. [Google Scholar] [CrossRef]
- Sarabia, J.M.; Moya-Ramón, M.; Hernández-Davó, J.L.; Fernandez-Fernandez, J.; Sabido, R. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training. PLoS ONE 2017, 12, e0186601. [Google Scholar] [CrossRef] [PubMed]
- Carlos-Vivas, J.; Marin-Cascales, E.; Freitas, T.T.; Perez-Gomez, J.; Alcaraz, P.E. Force-velocity-power profiling during weighted vest sprinting in soccer. Int. J. Sports Physiol. Perform. 2019, 14, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Monte, A.; Nardello, F.; Zamparo, P. Sled towing: The optimal overload for peak power production. Int. J. Sports Physiol. Perform. 2017, 12, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.R.; Tinwala, F.; Lenetsky, S.; Brown, S.R.; Brughelli, M.; Morin, J.B.; Samozino, P. Assessing horizontal force production in resisted sprinting: Computation and practical interpretation. Int. J. Sports Physiol. Perform. 2019, 14, 689–693. [Google Scholar] [CrossRef]
- Feser, E.; Lindley, K.; Clark, K.; Bezodis, N.; Korfist, C.; Cronin, J. Comparison of two measurement devices for obtaining horizontal force-velocity profile variables during sprint running. Int. J. Sports Sci. Coach. 2022, 17, 1455–1461. [Google Scholar] [CrossRef]
- Sugisaki, N.; Tsuchie, H.; Takai, Y.; Kobayashi, K.; Yoshimoto, T.; Kanehisa, H. Validity of spatiotemporal and ground reaction force estimates during resisted sprinting with a motorized loading device. Scand. J. Med. Sci. Sports 2024, 34, e14597. [Google Scholar] [CrossRef] [PubMed]
- Pantoja, P.D.; Carvalho, A.R.; Ribas, L.R.; Peyré-Tartaruga, L.A. Effect of weighted sled towing on sprinting effectiveness, power and force-velocity relationship. PLoS ONE 2018, 13, e0204473. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Samozino, P.; Murata, M.; Cross, M.R.; Nagahara, R. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. J. Biomech. 2019, 94, 82–87. [Google Scholar] [CrossRef]
- Edouard, P.; Lahti, J.; Nagahara, R.; Samozino, P.; Navarro, L.; Guex, K.; Rossi, J.; Brughelli, M.; Mendiguchia, J.; Morin, J.B. Low horizontal force production capacity during sprinting as a potential risk factor of hamstring injury in football. Int. J. Environ. Res. Public Health 2021, 18, 7827. [Google Scholar] [CrossRef] [PubMed]
- Mendiguchia, J.; Edouard, P.; Samozino, P.; Brughelli, M.; Cross, M.; Ross, A.; Gill, N.; Morin, J.B. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: Two case reports. J. Sports Sci. 2016, 34, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Lahti, J.; Jimenez-Reyes, P.; Cross, M.R.; Samozino, P.; Chassaing, P.; Simond-Cote, B.; Ahtiainen, J.P.; Morin, J.B. Individual Sprint Force-Velocity Profile Adaptations to In-Season Assisted and Resisted Velocity-Based Training in Professional Rugby. Sports 2020, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Sašek, M.; Cvjetičanin, O.; Šarabon, N. In vitro quantification of the resistance force properties of a hydraulic resistance device designed for sprinting. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2024, 1–6. [Google Scholar] [CrossRef]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Cross, M.R.; Lahti, J.; Brown, S.R.; Chedati, M.; Jimenez-Reyes, P.; Samozino, P.; Eriksrud, O.; Morin, J.B. Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. PLoS ONE 2018, 13, e0195477. [Google Scholar] [CrossRef]
- Haugen, T.; Seiler, S.; Sandbakk, Ø.; Tønnessen, E. The Training and Development of Elite Sprint Performance: An Integration of Scientific and Best Practice Literature. Sports Med.-Open 2019, 5, 44. [Google Scholar] [CrossRef]
- Loturco, I.; Freitas, T.T.; Zabaloy, S.; Pereira, L.A.; Moura, T.B.M.A.; Fernandes, V.; Mercer, V.P.; Alcaraz, P.E.; Zając, A.; Bishop, C. Speed Training Practices of Brazilian Olympic Sprint and Jump Coaches: Toward a Deeper Understanding of Their Choices and Insights (Part II). J. Hum. Kinet. 2023, 89, 187–211. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, G.A.; Buchner, A. A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. J. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Valencia, M.A.; Romero-Arenas, S.; Elvira, J.L.L.; González-Ravé, J.M.; Navarro-Valdivielso, F.; Alcaraz, P.E. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance during the Acceleration Phase. J. Hum. Kinet. 2015, 46, 139–148. [Google Scholar] [CrossRef]
- Fornasier-Santos, C.; Arnould, A.; Jusseaume, J.; Millot, B.; Guilhem, G.; Couturier, A.; Samozino, P.; Slawinski, J.; Morin, J.B. Sprint Acceleration Mechanical Outputs Derived from Position– or Velocity–Time Data: A Multi-System Comparison Study. Sensors 2022, 22, 8610. [Google Scholar] [CrossRef] [PubMed]
- Sašek, M.; Cvjetičanin, O.; Šarabon, N. The validity and reliability of a hydraulic resistance device for assessing resisted sprint time. Front. Sports Act. Living 2024, 6, 1386882. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Samozino, P. A Simple Method for Measuring Force, Velocity and Power Capabilities and Mechanical Effectiveness During Sprint Running. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods; Morin, J.B., Samozino, P., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 237–267. ISBN 9783319056333. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Chang, F.; Qian, D.; Zong, S.; Shen, Y. The effect of different resistance and assistance loads on 30-m sprint kinematics. PLoS ONE 2024, 19, e0298517. [Google Scholar] [CrossRef]
- Cahill, M.J.; Oliver, J.L.; Cronin, J.B.; Clark, K.P.; Cross, M.R.; Lloyd, R.S. Sled-pull load–velocity profiling and implications for sprint training prescription in young male athletes. Sports 2019, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Ettema, G. The Force–Velocity Profiling Concept for Sprint Running Is a Dead End. Int. J. Sports Physiol. Perform. 2024, 19, 88–91. [Google Scholar] [CrossRef]
- Murata, M.; Takai, Y.; Kanehisa, H.; Fukunaga, T.; Nagahara, R. Spatiotemporal and kinetic determinants of sprint acceleration performance in soccer players. Sports 2018, 6, 169. [Google Scholar] [CrossRef] [PubMed]
- Gleadhill, S.; Nagahara, R. Kinetic and kinematic determinants of female sprint performance. J. Sports Sci. 2020, 39, 609–617. [Google Scholar] [CrossRef]
- Rabita, G.; Dorel, S.; Slawinski, J.; Sàez-de-Villarreal, E.; Couturier, A.; Samozino, P.; Morin, J.B. Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scand. J. Med. Sci. Sports 2015, 25, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Sáez De Villarreal, E.; Mora-Custodio, R.; Asián-Clemente, J.A.; Bachero-Mena, B.; Loturco, I.; Pareja-Blanco, F. Effects of Different Loading Conditions During Resisted Sprint Training on Sprint Performance. J. Strength Cond. Res. 2022, 36, 2725–2732. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, L.; Dai, J.; Yang, Q.; Huang, Z.; He, J.; Ji, H.; Sun, J.; Li, D. Application of a New Monitoring Variable: Effects of Power Loss during Squat Training on Strength Gains and Sports Performance. J. Strength Cond. Res. 2024, 38, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 2018, e5937. [Google Scholar] [CrossRef] [PubMed]
Variable | Overload | Calculation Method | Two-Way ANOVA | ||
---|---|---|---|---|---|
FP | HRD | Main Effect | Interaction | ||
Fr (N) | MiL | 16.86 (2.64) | 13.53 (2.28) | overload: F = 6167.0; p < 0.001; η2 = 0.99 method: F = 28.2; p < 0.001; η2 = 0.51 | overload × method: F = 1.3; p = 0.286; η2 = 0.04 |
MoL | 35.55 (3.78) | 33.11 (3.64) | |||
HiL | 114.80 (6.60) | 110.60 (4.13) | |||
Favg (N/kg) | MiL | 2.24 (0.30) | 2.19 (0.28) | overload: F = 120.4; p < 0.001; η2 = 0.82 method: F = 30.5; p < 0.001; η2 = 0.53 | overload × method: F = 0.5; p = 0.589; η2 = 0.02 |
MoL | 2.23 (0.37) | 2.24 (0.37) | |||
HiL | 2.72 (0.28) | 2.67 (0.25) | |||
Pavg (W/kg) | MiL | 8.77 (1.72) | 8.56 (1.60) | overload: F = 16.3; p < 0.001; η2 = 0.38 method: F = 24.7; p < 0.001; η2 = 0.48 | overload × method: F = 0.5; p = 0.587; η2 = 0.02 |
MoL | 8.73 (1.71) | 8.55 (1.55) | |||
HiL | 9.72 (1.98) | 9.47 (1.83) | |||
F0 (N/kg) | MiL | 7.44 (0.99) | 7.33 (0.99) | overload: F = 49.5; p < 0.001; η2 = 0.65 method: F = 152.6; p < 0.001; η2 = 0.85 | overload × method: F = 27.2; p < 0.001; η2 = 0.50 |
MoL | 8.05 (1.04) | 7.59 (0.88) | |||
HiL | 9.24 (1.19) | 8.82 (1.10) | |||
v0 (m/s) | MiL | 7.67 (0.65) | 7.65 (0.64) | overload: F = 14.52; p < 0.001; η2 = 0.35 method: F = 109.0; p < 0.001; η2 = 0.80 | overload × method: F = 12.9; p < 0.001; η2 = 0.32 |
MoL | 7.29 (0.72) | 7.36 (0.70) | |||
HiL | 6.23 (1.08) | 6.31 (1.06) | |||
Pmax (W/kg) | MiL | 14.32 (2.60) | 14.08 (2.53) | overload: F = 0.24; p = 0.770; η2 = 0.01 method: F = 103.1; p < 0.001; η2 = 0.80 | overload × method: F = 14.7; p < 0.001 η2 = 0.13 |
MoL | 14.70 (2.63) | 14.01 (2.34) | |||
HiL | 14.39 (3.03) | 13.90 (2.90) |
Variable | Overload | FP vs. HRD | |
---|---|---|---|
MD (95% CI) | r (95% CI) | ||
Fr (N) | MiL | 3.33 (2.04–4.61) *** | 0.10 (−0.28–0.46) |
MoL | 2.44 (0.76–4.12) ** | 0.32 (−0.06–0.62) | |
HiL | 4.14 (1.86–6.43) *** | 0.48 (0.12–0.72) | |
Favg (N/kg) | MiL | 0.05 (0.03–0.06) *** | 0.99 (0.98–0.99) |
MoL | 0.04 (0.01–0.06) ** | 0.99 (0.97–0.99) | |
HiL | 0.05 (0.02–0.08) ** | 0.99 (0.97–0.99) | |
Pavg (W/kg) | MiL | 0.22 (0.11–0.32) ** | 0.99 (0.97–0.99) |
MoL | 0.18 (0.05–0.30) ** | 0.98 (0.96–0.99) | |
HiL | 0.25 (0.11–0.39) ** | 0.98 (0.96–0.99) | |
F0 (N/kg) | MiL | 0.10 (0.08–0.13) *** | 1.00 (0.99–1.00) |
MoL | 0.46 (0.36–550) *** | 0.98 (0.96–0.99) | |
HiL | 0.42 (0.32–0.52) *** | 0.98 (0.95–0.99) | |
v0 (m/s) | MiL | 0.02 (−0.00–0.04) | 1.00 (0.99–1.00) |
MoL | −0.07 (−0.10–0.05) *** | 0.99 (0.97–0.99) | |
HiL | −0.07 (−0.12–0.03) ** | 0.99 (0.99–1.00) | |
Pmax (W/kg) | MiL | 0.24 (0.18–0.31) *** | 1.00 (0.99–1.00) |
MoL | 0.70 (0.51–0.89) *** | 1.00 (0.99–1.00) | |
HiL | 0.49 (0.35–0.62) *** | 0.99 (0.98–1.00) |
Variables | Method | MD (95% CI) | ||
---|---|---|---|---|
MiL vs. MoL | MiL vs. HiL | MoL vs. HiL | ||
Fr (N) | FP | −18.70 (−20.53–−16.85) *** | −97.92 (−101.16–−94.69) *** | 79.23 (−83.00–−75.46) *** |
HRD | −19.6 (−21.7–−17.4) *** | −97.1 (−99.5–−94.8) *** | −77.5 (−80.2–−74.9) *** | |
Favg (N/kg) | FP | −0.04 (−0.09–0.02) | −0.49 (−0.61–0.37) *** | −0.45 (−0.55–−0.35) *** |
HRD | −0.05 (−0.10–0.01) | −0.48 (−0.59–−0.38) *** | −0.44 (−0.53–0.35) *** | |
Pavg (W/kg) | FP | 0.05 (−0.25–0.35) | −0.95 (−1.64–−0.26) ** | −1.00 (−1.53–0.47) *** |
HRD | 0.01 (−0.28–0.29) | −0.92 (−1.49–−0.35) ** | 0.93 (−1.41–0.44) *** | |
F0 (N/kg) | FP | −0.61 (−1.01–−0.21) ** | −1.80 (−2.30–−1.30) *** | −1.20 (−1.70–−0.70) *** |
HRD | −0.26 (−0.64–0.12) | −1.49 (−1.91–−1.07) *** | −1.23 (−1.67–−0.79) *** | |
v0 (m/s) | FP | 0.38 (0.27–0.50) *** | 1.43 (1.10–1.77) *** | 1.05 (0.79–1.32) *** |
HRD | 0.29 (0.18–0.40) *** | 1.34 (1.03–1.66) *** | 1.05 (0.79–1.32) *** | |
Pmax (W/kg) | FP | −0.39 (−1.15–0.37) | −0.07 (−1.05–0.92) | 0.32 (−0.53–1.17) |
HRD | 0.07 (−0.65–0.79) | 0.18 (−0.72–1.07) | 0.11 (−0.66–0.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sašek, M.; Cvjetičanin, O.; Šarabon, N. Hydraulic Resistance Device for Force, Power, and Force–Velocity–Power Profile Assessment During Resisted Sprints with Different Overloads. Appl. Sci. 2025, 15, 1064. https://doi.org/10.3390/app15031064
Sašek M, Cvjetičanin O, Šarabon N. Hydraulic Resistance Device for Force, Power, and Force–Velocity–Power Profile Assessment During Resisted Sprints with Different Overloads. Applied Sciences. 2025; 15(3):1064. https://doi.org/10.3390/app15031064
Chicago/Turabian StyleSašek, Matic, Oskar Cvjetičanin, and Nejc Šarabon. 2025. "Hydraulic Resistance Device for Force, Power, and Force–Velocity–Power Profile Assessment During Resisted Sprints with Different Overloads" Applied Sciences 15, no. 3: 1064. https://doi.org/10.3390/app15031064
APA StyleSašek, M., Cvjetičanin, O., & Šarabon, N. (2025). Hydraulic Resistance Device for Force, Power, and Force–Velocity–Power Profile Assessment During Resisted Sprints with Different Overloads. Applied Sciences, 15(3), 1064. https://doi.org/10.3390/app15031064