A Trustworthy Framework for Skin Cancer Detection Using a CNN with a Modified Attention Mechanism
Abstract
:1. Introduction
- Incorporation of the ConvNeXt-based model: This provides high performance, confirming an effective cancer pattern followed by contextual understanding.
- Modified attention mechanism: Fitted to the focal point on related image regions, improving diagnostic precision and reducing errors.
- Explainable AI with Grad-CAM: Provides visual justification of the model’s outcomes, enhancing transparency and clinician trust.
- Comprehensive training over the HAM10000 dataset: Utilizes a distinct dataset to improve the generalization of the model to new images.
- Optimal feature collection and fusion: Combines the most informative features for specialized dermatoscopic analysis.
- Rigorous evaluation: Validates the model’s effectiveness through extensive testing and performance metrics.
- Proposed DCAN-Net framework: This study introduces DCAN-Net, an advanced deep learning framework for skin cancer detection. It incorporates a tailored attention mechanism to focus on critical regions of dermatoscopic images, improving diagnostic accuracy and providing visual attention maps for enhanced explainability.
- Integration of ConvNeXt and modified Grad-CAM: ConvNeXt serves as the core feature extraction architecture, offering state-of-the-art efficiency, while a modified Grad-CAM explainable AI enhances interpretability. This combination improves the diagnostic precision and empowers clinicians with insights into the model’s decision-making process.
- Parallel feature fusion strategy: An advanced parallel feature fusion strategy amplifies essential feature extraction, enabling accurate skin cancer classification by distilling critical details from dermatoscopic images.
- Comprehensive ablation study: Rigorous ablation studies evaluate the impact of hyperparameters and model components, resulting in reduced false positives and negatives and overall improved accuracy.
- Evaluation on the HAM10000 dataset: Extensive testing on the HAM10000 dataset including its augmented version was conducted to validate the model’s robust generalization, precision, and potential to transform healthcare diagnostics.
- Addressing limitations of traditional CNNs: The study tackles challenges in traditional CNNs including the lack of explainability, overfitting, and sensitivity to data quality. It ensures improved reliability for diverse real-world clinical scenarios.
- Enhanced trustworthiness: By incorporating Grad-CAM for visual explanations, robust preprocessing, balanced training, and continuous evaluation, DCAN-Net can establish a transparent, reliable, and clinically applicable system for skin cancer detection.
2. Related Work
2.1. Analysis of Existing Attention Mechanisms for Skin Cancer Detection
2.2. Conventional Machine Learning Methods
2.3. Deep Learning Methods
2.4. Hybrid Learning Methods
3. Proposed DCAN-Net
3.1. Preprocessing
3.2. Proposed Model Selection
4. Results and Discussion
4.1. Experimental Setting
4.2. Dataset Description
4.3. Model Performance Metrics
4.4. Results Evaluation with and Without Preprocessing
4.5. Results Comparison with State-of-the-Art Methods
4.6. Ablation Study
4.7. Visualization and Comparison of the Results of the Proposed Model
4.8. Pros and Cons of the Proposed Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, T.M.; Milhan, M.; Atif, M.; Wahab, A.; Mushtaq, M. Cervical cancer prediction through different screening methods using data mining. IJACSA Int. J. Adv. Comput. Sci. Appl. 2019. [Google Scholar] [CrossRef]
- Shalhout, S.Z.; Kaufman, H.L.; Emerick, K.S.; Miller, D.M. Immunotherapy for Nonmelanoma skin cancer: Facts and Hopes. Clin. Cancer Res. 2022, 28, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Mignion, L.; Desmet, C.M.; Harkemanne, E.; Tromme, I.; Joudiou, N.; Wehbi, M.; Baurain, J.-F.; Gallez, B. Noninvasive detection of the endogenous free radical melanin in human skin melanomas using electron paramagnetic resonance (EPR). Free Radic. Biol. Med. 2022, 190, 226–233. [Google Scholar] [CrossRef]
- Gururaj, H.L.; Manju, N.; Nagarjun, A.; Aradhya, V.N.M.; Flammini, F. DeepSkin: A deep learning approach for skin cancer classification. IEEE Access 2023, 1, 50205–50214. [Google Scholar] [CrossRef]
- Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.; Hofmann-Wellenhof, R.; et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: An open, web-based, international, diagnostic study. Lancet Oncol. 2019, 20, 938–947. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics for Melanoma Skin Cancer; American Cancer Society Center: Atlanta, GA, USA, 2022. [Google Scholar]
- Riaz, L.; Qadir, H.M.; Ali, G.; Ali, M.; Raza, M.A.; Jurcut, A.D.; Ali, J. A Comprehensive Joint Learning System to Detect Skin Cancer. IEEE Access 2023, 11, 79434–79444. [Google Scholar] [CrossRef]
- Krishnan, M.M.R.; Venkatraghavan, V.; Acharya, U.R.; Pal, M.; Paul, R.R.; Min, L.C.; Ray, A.K.; Chatterjee, J.; Chakraborty, C. Automated oral cancer identification using histopathological images: A hybrid feature extraction paradigm. Micron 2012, 43, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Akilandasowmya, G.; Nirmaladevi, G.; Suganthi, S.; Aishwariya, A. Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification. Biomed. Signal Process. Control 2024, 88, 105306. [Google Scholar] [CrossRef]
- Argenziano, G.; Soyer, H.P. Dermoscopy of pigmented skin lesions—A valuable tool for early. Lancet Oncol. 2001, 2, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002, 3, 159–165. [Google Scholar] [CrossRef]
- Javaid, A.; Sadiq, M.; Akram, F. Skin cancer classification using image processing and machine learning. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Yar, H.; Abbas, N.; Sadad, T.; Iqbal, S. Lung nodule detection and classification using 2D and 3D convolution neural networks (CNNs). In Artificial Intelligence and Internet of Things; CRC Press: Boca Raton, FL, USA, 2021; pp. 365–386. [Google Scholar]
- George, M.; Zwiggelaar, R. Breast tissue classification using Local Binary Pattern variants: A comparative study. In Medical Image Understanding and Analysis, Proceedings of the 22nd Conference, MIUA 2018, Southampton, UK, 9–11 July 2018; Proceedings 22; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Milton, M.A.A. Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis towards melanoma detection challenge. arXiv 2019, arXiv:1901.10802. [Google Scholar]
- Wolner, Z.J.; Yélamos, O.; Liopyris, K.; Rogers, T.; Marchetti, M.A.; Marghoob, A.A. Enhancing skin cancer diagnosis with dermoscopy. Dermatol. Clin. 2017, 35, 417–437. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Taufiq, M.A.; Hameed, N.; Anjum, A.; Hameed, F. m-Skin Doctor: A mobile enabled system for early melanoma skin cancer detection using support vector machine. In eHealth 360°, Proceedings of the International Summit on eHealth, Budapest, Hungary, 14–16 June 2016; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Vidhyalakshmi, A.; Kanchana, M. AMLGB-: Efficient Model for Skin Disease Detection and Classification using Adaptive Machine for Light Gradient Boosting. In Proceedings of the 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 23–25 January 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Jaisakthi, S.M.; Mirunalini, P.; Aravindan, C. Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Comput. Vis. 2018, 12, 1088–1095. [Google Scholar] [CrossRef]
- Masood, A.; Al-Jumaily, A.; Anam, K. Self-supervised learning model for skin cancer diagnosis. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K. Melanoma detection by analysis of clinical images using convolutional neural network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Ghanshala, T.; Tripathi, V.; Pant, B. An efficient image-based skin cancer classification framework using neural network. In Research in Intelligent and Computing in Engineering; Springer: Singapore, 2021; pp. 851–858. [Google Scholar] [CrossRef]
- Hameed, N.; Shabut, A.; Hameed, F.; Cirstea, S.; Harriet, S.; Hossain, A. Mobile based skin lesions classification using convolution neural network. Ann. Emerg. Technol. Comput. (AETiC) 2020, 4, 26–37. [Google Scholar] [CrossRef]
- Subramanian, R.R.; Achuth, D.; Kumar, P.S.; Reddy, K.N.K.; Amara, S.; Chowdary, A.S. Skin cancer classification using Convolutional neural networks. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Malo, D.C.; Rahman, M.M.; Mahbub, J.; Khan, M.M. Skin Cancer Detection using Convolutional Neural Network. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Nampalle, K.B.; Raman, B. An efficient multi-functional deep learning model for effective medical image classification using skin lesion database. In Proceedings of the 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR), Online, 2–4 August 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Li, L.; Seo, W. Deep learning and transfer learning for skin cancer segmentation and classification. In Proceedings of the 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE), Kragujevac, Serbia, 25–27 October 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Agrahari, P.; Agrawal, A.; Subhashini, N. Skin cancer detection using deep learning. In Futuristic Communication and Network Technologies: Select Proceedings of VICFCNT 2020; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Advances in Neural Information Processing Systems 27, Proceedings of the Annual Conference on Neural Information Processing Systems 2014, NIPS, Montreal, QC, Canada, 8–13 December 2014; NIPS: Montreal, QC, Canada, 2014; Volume 27, p. 27. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Zhu, B.; Hofstee, P.; Lee, J.; Al-Ars, Z. An attention module for convolutional neural networks. In Artificial Neural Networks and Machine Learning, Proceedings of the ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, 14–17 September 2021; Proceedings, Part I 30; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Rensink, R.A. The dynamic representation of scenes. Vis. Cogn. 2000, 7, 17–42. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Qian, S.; Ren, K.; Zhang, W.; Ning, H. Skin lesion classification using CNNs with grouping of multi-scale attention and class-specific loss weighting. Comput. Methods Programs Biomed. 2022, 226, 107166. [Google Scholar] [CrossRef]
- Singh, H.; Devi, K.S.; Gaur, S.S.; Bhattacharjee, R. Automated Skin Cancer Detection using Deep Learning with Self-Attention Mechanism. In Proceedings of the 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 28–30 April 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Castro-Fernández, M.; Hernández, A.; Fabelo, H.; Balea-Fernández, F.J.; Ortega, S.; Callicó, G.M. Towards Skin Cancer Self-Monitoring through an Optimized MobileNet with Coordinate Attention. In Proceedings of the 2022 25th Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain, 31 August–2 September 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Aladhadh, S.; Alsanea, M.; Aloraini, M.; Khan, T.; Habib, S.; Islam, M. An effective skin cancer classification mechanism via medical vision transformer. Sensors 2022, 22, 4008. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Yar, H.; Hussain, T.; Agarwal, M.; Khan, Z.A.; Gupta, S.K.; Baik, S.W. Optimized Dual Fire Attention Network and Medium-Scale Fire Classification Benchmark. IEEE Trans. Image Process. 2022, 31, 6331–6343. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, C.; Dai, X.; Yuan, L.; Gao, J. Focal modulation networks. Adv. Neural Inf. Process. Syst. 2022, 35, 4203–4217. [Google Scholar]
- Chaturvedi, S.S.; Gupta, K.; Prasad, P.S. Skin lesion analyser: An efficient seven-way multi-class skin cancer classification using mobilenet. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Jaipur, India, 13–15 February 2020; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Huang, H.W.; Hsu, B.W.; Lee, C.; Tseng, V.S. Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers. J. Dermatol. 2021, 48, 310–316. [Google Scholar] [CrossRef]
- Shahin, A.H.; Kamal, A.; Elattar, M.A. Deep ensemble learning for skin lesion classification from dermoscopic images. In Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Carcagnì, P.; Leo, M.; Cuna, A.; Mazzeo, P.L.; Spagnolo, P.; Celeste, G.; Distante, C. Classification of skin lesions by combining multilevel learnings in a DenseNet architecture. In Proceedings of the 20th International Conference Image Analysis and Processing (ICIAP 2019), Trento, Italy, 9–13 September 2019; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A multi-class skin Cancer classification using deep convolutional neural networks. Multimedia Tools Appl. 2020, 79, 28477–28498. [Google Scholar] [CrossRef]
- Alsunaidi, S.J.; Almuhaideb, A.M.; Ibrahim, N.M.; Shaikh, F.S.; Alqudaihi, K.S.; Alhaidari, F.A.; Khan, I.U.; Aslam, N.; Alshahrani, M.S. Applications of big data analytics to control COVID-19 pandemic. Sensors 2021, 21, 2282. [Google Scholar] [CrossRef] [PubMed]
No. | Class | Before Preprocessing | After Preprocessing |
---|---|---|---|
1 | Akiec | 327 | 1099 |
2 | Bcc | 541 | 1099 |
3 | Bkl | 1099 | 1099 |
4 | Df | 155 | 1099 |
5 | Nv | 6705 | 6705 |
6 | Mel | 1113 | 1113 |
7 | Vasc | 142 | 1099 |
Class | Akiec | Bcc | Bkl | Df | Mel | Nv | Vasc | Class-Wise Accuracy |
---|---|---|---|---|---|---|---|---|
Akiec | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 98.00% |
Bcc | 0.07 | 0.84 | 0.06 | 0.00 | 0.01 | 0.00 | 0.02 | 84.00% |
Bkl | 0.02 | 0.03 | 0.86 | 0.01 | 0.03 | 0.05 | 0.00 | 86.00% |
Df | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 100% |
Mel | 0.03 | 0.01 | 0.07 | 0.00 | 0.80 | 0.09 | 0.00 | 80.00% |
Nv | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.95 | 0.01 | 95.00% |
Vasc | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 100% |
S: No. | Class Name | Precision | Recall | F1-Score |
---|---|---|---|---|
1 | AKiec | 0.92 | 0.98 | 0.95 |
2 | Bcc | 0.85 | 0.84 | 0.84 |
3 | Bkl | 0.80 | 0.86 | 0.83 |
4 | Df | 0.94 | 1.00 | 0.97 |
5 | Mel | 0.77 | 0.80 | 0.78 |
6 | Nv | 0.93 | 0.95 | 0.94 |
7 | Vasc | 0.99 | 1.00 | 0.99 |
Class | Akiec | Bcc | Bkl | Df | Mel | Nv | Vasc | Class-Wise Accuracy |
---|---|---|---|---|---|---|---|---|
Akiec | 0.97 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 97.00% |
Bcc | 0.01 | 0.95 | 0.01 | 0.00 | 0.02 | 0.01 | 0.00 | 95.00% |
Bkl | 0.01 | 0.01 | 0.96 | 0.00 | 0.01 | 0.01 | 0.00 | 96.00% |
Df | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 100% |
Mel | 0.00 | 0.00 | 0.02 | 0.00 | 0.97 | 0.01 | 0.00 | 97.00% |
Nv | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.98 | 0.01 | 98.00% |
Vasc | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 100% |
S: No. | Class Name | Precision | Recall | F1-Score |
---|---|---|---|---|
1 | AKiec | 0.96 | 0.97 | 0.97 |
2 | Bcc | 0.97 | 0.95 | 0.96 |
3 | Bkl | 0.95 | 0.96 | 0.95 |
4 | Df | 0.98 | 1.00 | 0.99 |
5 | Mel | 0.96 | 0.97 | 0.96 |
6 | Nv | 0.97 | 0.98 | 0.97 |
7 | Vasc | 1.00 | 1.00 | 1.00 |
S: No | Optimizer | ResNet | Inception | DenseNet | EfficientNet | Xception | MobileNetV2 |
---|---|---|---|---|---|---|---|
1 | SGD | 65.7 | 64.3 | 89.3 | 91.4 | 90.0 | 89.4 |
2 | Adamax | 94.3 | 93.6 | 95.7 | 92.2 | 91.2 | 89.7 |
3 | Nadam | 93.7 | 82.2 | 96.3 | 92.5 | 91.5 | 90.0 |
4 | Adagrad | 78.5 | 77.5 | 90.6 | 91.0 | 89.7 | 88.8 |
5 | adadelta | 95.2 | 53.5 | 66.4 | 91.8 | 90.3 | 89.1 |
6 | RMSprop | 92.5 | 90.8 | 94.7 | 92.7 | 90.7 | 89.3 |
7 | Adam | 96.6 | 95.9 | 96.3 | 92.3 | 91.1 | 90.0 |
Reference | Dataset | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Gupta [43] | HAM10000 | 89.00 | 83.00 | 83.00 | 83.10 |
Huang [44] | KCGMH, HAM10000 | 75.18 | -- | -- | 85.80 |
Shahin [45] | ISIC 2018 | 86.20 | 79.60 | -- | 89.90 |
Carcagnì [46] | HAM10000 | 88.00 | 76.00 | 82.00 | 90.00 |
Chaturvedi [47] | HAM10000 | 88.00 | 88.00 | -- | 93.20 |
Alsunaidi [48] | King Fahd Hospital Dataset | 92.22 | 84.20 | 88.03 | 95.80 |
Aladhadh et al. [39] | HAM10000 | 96.00 | 96.50 | 97.00 | 96.14 |
DCAN-Net | HAM10000 | 97.00 | 97.57 | 97.10 | 97.57 |
Methods | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
Solo-ConvNeXtBase | 96.30 | 96.70 | 96.49 | 96.40 |
ConvNeXtBase + channel attention | 96.55 | 96.80 | 96.67 | 96.52 |
ConvNeXtBase + spatial attention | 96.88 | 97.15 | 97.01 | 97.00 |
ConvNeXtBase + channel + spatial attention | 97.00 | 97.57 | 97.10 | 97.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thwin, S.M.; Park, H.-S.; Seo, S.H. A Trustworthy Framework for Skin Cancer Detection Using a CNN with a Modified Attention Mechanism. Appl. Sci. 2025, 15, 1067. https://doi.org/10.3390/app15031067
Thwin SM, Park H-S, Seo SH. A Trustworthy Framework for Skin Cancer Detection Using a CNN with a Modified Attention Mechanism. Applied Sciences. 2025; 15(3):1067. https://doi.org/10.3390/app15031067
Chicago/Turabian StyleThwin, Su Myat, Hyun-Seok Park, and Soo Hyun Seo. 2025. "A Trustworthy Framework for Skin Cancer Detection Using a CNN with a Modified Attention Mechanism" Applied Sciences 15, no. 3: 1067. https://doi.org/10.3390/app15031067
APA StyleThwin, S. M., Park, H.-S., & Seo, S. H. (2025). A Trustworthy Framework for Skin Cancer Detection Using a CNN with a Modified Attention Mechanism. Applied Sciences, 15(3), 1067. https://doi.org/10.3390/app15031067