Research on Personalized Course Resource Recommendation Method Based on GEMRec
Abstract
:1. Introduction
2. Related Work
2.1. Recommendation Models
2.2. Multimodal Learning
2.3. Knowledge Graph Recommendations
3. Graph-Enhanced Multimodal Recommendation Method: GEMRec
3.1. Multimodal Feature Preprocessing
3.2. Multimodal Feature Fusion and Entity Extraction Strategy
3.2.1. Cross-Modal Preprocessing
3.2.2. Cross-Modal Relationship Capture
3.2.3. Multimodal Feature Fusion Strategy
3.2.4. Entity and Relationship Extraction
3.3. Similarity Search Based on Knowledge Graph Edit Distance
3.4. Interpretable Methods for Graph-Semantic Enhancement
3.4.1. SHAP-Based Feature Importance Analysis
3.4.2. Graph-Semantic Enhancement with Large Models
4. Experiments and Results Analysis
4.1. Experimental Design
4.1.1. Dataset Introduction
- (1)
- Course Resource Data
- (2)
- Student Behavior Data
4.1.2. Experimental Setup
4.2. Multimodal Knowledge Graph Construction Experiments
4.2.1. Multimodal Feature Fusion Effectiveness
4.2.2. Entity and Relationship Extraction Results
4.3. Knowledge Graph Similarity Calculation Experiment
4.4. Recommendation Interpretability Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andika, H.G.; Hadinata, M.T.; Huang, W.; Anderies, A.; Iswanto, I.A.I. Systematic Literature Review: Comparison on Collaborative Filtering Algorithms for Recommendation Systems. In Proceedings of the 2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Solo, Indonesia, 3–5 November 2022; pp. 56–61. [Google Scholar]
- Javed, U.; Shaukat, K.; Hameed, I.; Iqbal, F.; Alam, T.M.; Luo, S. A Review of Content-Based and Context-Based Recommendation Systems. Int. J. Emerg. Technol. Learn. 2021, 16, 274–306. [Google Scholar] [CrossRef]
- Wahyudi, K.; Latupapua, J.; Chandra, R.; Girsang, A.S. Hotel Content-Based Recommendation System. J. Phys. Conf. Ser. 2020, 1485, 012017. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Shanmugam, S.D. Hybrid Recommendation System Based on Collaborative and Content-Based Filtering. Cybern. Syst. 2022, 54, 432–453. [Google Scholar] [CrossRef]
- Tolety, V.B.P.; Prasad, E.V. Hybrid Content and Collaborative Filtering Based Recommendation System for E-Learning Platforms. Bull. Electr. Eng. Inform. 2022, 11, 1543–1549. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.; Malhotra, M. Automatic Recommendation System Based on Hybrid Filtering Algorithm. Educ. Inf. Technol. 2021, 27, 1523–1538. [Google Scholar] [CrossRef]
- Liu, H. Implementation and Effectiveness Evaluation of Four Common Algorithms of Recommendation Systems—User Collaboration Filter, Item-based Collaborative Filtering, Matrix Factorization and Neural Collaborative Filtering. In Proceedings of the 2022 International Conference on Cloud Computing, Big Data Applications and Software Engineering (CBASE), Suzhou, China, 23–25 September 2022; pp. 224–227. [Google Scholar] [CrossRef]
- Hekmatfar, T.; Haratizadeh, S.; Razban, P.; Goliaei, S. Attention-Based Recommendation on Graphs. arXiv 2022. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, P.; Zhao, L.; Liu, Y.; Sheng, V.; Zhou, X. Variational Self-attention Network for Sequential Recommendation. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; pp. 1559–1570. [Google Scholar] [CrossRef]
- Xu, C.; Feng, J.; Zhao, P.; Zhuang, F.; Wang, D.; Liu, Y.; Sheng, V. Long- and Short-Term Self-Attention Network for Sequential Recommendation. Neurocomputing 2021, 423, 580–589. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; McAuley, J. Time Interval Aware Self-Attention for Sequential Recommendation. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Shen, Z. Multimodal Pre-training Framework for Sequential Recommendation via Contrastive Learning. arXiv 2023. [Google Scholar] [CrossRef]
- Malitesta, D.; Gassi, G.; Pomo, C.; Noia, T.D. Ducho: A Unified Framework for the Extraction of Multimodal Features in Recommendation. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023. [Google Scholar] [CrossRef]
- Liu, F.; Cheng, Z.; Chen, H.-M.; Liu, A.-A.; Nie, L.; Kankanhalli, M.S. Disentangled Multimodal Representation Learning for Recommendation. arXiv 2022. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Zhu, W. Multimodal Disentangled Representation for Recommendation. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, W.; Fang, Z.; Zhang, T.; Wu, S.; Lu, C. Modal-Aware Bias Constrained Contrastive Learning for Multimodal Recommendation. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023. [Google Scholar] [CrossRef]
- Mu, Y.; Wu, Y. Multimodal Movie Recommendation System Using Deep Learning. Mathematics 2023, 11, 895. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Xia, L.; Li, C. Knowledge Graph Contrastive Learning for Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, F.; Gui, X.; Jin, H. Path-Enhanced Explainable Recommendation with Knowledge Graphs. World Wide Web 2021, 24, 1769–1789. [Google Scholar] [CrossRef]
- Liu, X.; Song, R.; Wang, Y.; Xu, H. A Multi-Granular Aggregation-Enhanced Knowledge Graph Representation for Recommendation. Information 2022, 13, 229. [Google Scholar] [CrossRef]
- Hou, S.; Wei, D. Research on Knowledge Graph-Based Recommender Systems. In Proceedings of the 2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS), Chengdu, China, 7–9 July 2023; pp. 737–742. [Google Scholar] [CrossRef]
- Sun, J.; Shagar, M.M.B. MUKG: Unifying Multi-Task and Knowledge Graph Method for Recommender System. In Proceedings of the 2020 2nd International Conference on Image Processing and Machine Vision, Bangkok, Thailand, 5–7 August 2020. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, M.; Zhang, Y.; Zhao, M.; Meng, Z.; Hao, J.; King, I. Modeling Scale-Free Graphs for Knowledge-Aware Recommendation. arXiv 2021. [Google Scholar] [CrossRef]
- Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A Survey on Knowledge Graph-Based Recommender Systems. IEEE Trans. Knowl. Data Eng. 2020, 34, 3549–3568. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, S. HAGERec: Hierarchical Attention Graph Convolutional Network Incorporating Knowledge Graph for Explainable Recommendation. Knowl. Based Syst. 2020, 204, 106194. [Google Scholar] [CrossRef]
- He, X.; Ke, X. Research Summary of Recommendation System Based on Knowledge Graph. In Proceedings of the 2021 3rd International Conference on Big Data Engineering, Shanghai, China, 26–28 May 2021. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, S.; Li, W.; Zhao, Y.; Zhang, M.; Tang, J. MOOCCubeX: A Large-Scale Data Repository for NLP Applications in MOOCs. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 15 November 2021. [Google Scholar]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001. pp. 285–295.
- Aggarwal, C.C. Content-based Recommender Systems. In Recommender Systems: The Textbook; Springer: Berlin/Heidelberg, Germany, 2016; pp. 139–166. [Google Scholar]
- Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction. arXiv 2017, arXiv:1703.04247. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar]
- Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.-S. KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 950–958. [Google Scholar]
- Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge Graph Convolutional Networks for Recommender Systems. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 3307–3313. [Google Scholar]
- Li, K.; Zhang, J.; Liu, Y.; Zhang, H. A Multimodal Graph Recommendation Method Based on Cross-Attention Fusion. Mathematics 2024, 12, 2353. [Google Scholar] [CrossRef]
Precision@10 | Recall@10 | NDCG@10 | |
---|---|---|---|
User-based CF [28] | 0.142 | 0.156 | 0.183 |
Item-based CF [28] | 0.158 | 0.142 | 0.201 |
CBR [29] | 0.173 | 0.189 | 0.215 |
DeepFM [30] | 0.231 | 0.228 | 0.242 |
NCF [31] | 0.213 | 0.229 | 0.236 |
KGAT [32] | 0.265 | 0.257 | 0.281 |
KGCN [33] | 0.261 | 0.259 | 0.288 |
CAmgr [34] | 0.264 | 0.262 | 0.293 |
GEMRec * | 0.267 | 0.265 | 0.297 |
Evaluation Method | Metric | Score |
---|---|---|
Automated | Perplexity | 15.3 |
BLEU-4 | 0.42 | |
Manual | Readability | 4.2 |
Relevance | 4.3 | |
Persuasiveness | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, E.; Sun, Z. Research on Personalized Course Resource Recommendation Method Based on GEMRec. Appl. Sci. 2025, 15, 1075. https://doi.org/10.3390/app15031075
Wang E, Sun Z. Research on Personalized Course Resource Recommendation Method Based on GEMRec. Applied Sciences. 2025; 15(3):1075. https://doi.org/10.3390/app15031075
Chicago/Turabian StyleWang, Enliang, and Zhixin Sun. 2025. "Research on Personalized Course Resource Recommendation Method Based on GEMRec" Applied Sciences 15, no. 3: 1075. https://doi.org/10.3390/app15031075
APA StyleWang, E., & Sun, Z. (2025). Research on Personalized Course Resource Recommendation Method Based on GEMRec. Applied Sciences, 15(3), 1075. https://doi.org/10.3390/app15031075