Sugar Maple and Red Maple Face-Off: Which Produces More and Sweeter Sap?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Tree Selection
2.2. Monitoring Sap Season and Production
2.3. Physicochemical Analysis of Sap
2.4. Osmolality of Sap
2.5. Sugar Profile of Sap
2.6. Statistical Analysis
3. Results
3.1. Sap Season and Yield
3.2. Brix Measurements
3.3. Sugar Content
3.4. Osmolality
3.5. pH and Conductivity
4. Discussion
4.1. Sugar Season and Sap Yield
4.2. Sugar Content and Physicochemical Characteristics of Sap
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitney, G.G.; Upmeyer, M.M. Sweet trees, sour circumstances: The long search for sustainability in the North American maple products industry. For. Ecol. Manag. 2004, 200, 313–333. [Google Scholar] [CrossRef]
- Duchesne, L.; Houle, D.; Côté, M.A.; Logan, T. Modelling the effect of climate on maple syrup production in Québec, Canada. For. Ecol. Manag. 2009, 258, 2683–2689. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. Statistical Overview of the Canadian Maple Industry. 2023. Available online: https://agriculture.canada.ca/sites/default/files/documents/2024-06/maple_report_2023-eng.pdf (accessed on 1 August 2024).
- Legault, S.; Houle, D.; Plouffe, A.; Ameztegui, A.; Kuehn, D.; Chase, L.; Blondlot, A.; Perkins, T.D. Perceptions of U.S. and Canadian maple syrup producers toward climate change, its impacts, and potential adaptation measures. PLoS ONE 2019, 14, e0215511. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.A.; Andrade, R.; Iglesias, M. Effect of temperature on physical properties of canadian maple (Acer saccharum Marsh) syrup. J. Bioeng. Technol. Health 2021, 4, 30–36. [Google Scholar] [CrossRef]
- Rademacher, T.; Cliche, M.; Bouchard, É.; Kurokawa, S.Y.S.; Rapp, J.; Deslauriers, A.; Messier, C.; Rossi, S.; Dupras, J.; Filotas, É.; et al. TAMM review: On the importance of tap and tree characteristics in maple sugaring. For. Ecol. Manag. 2023, 535, 120896. [Google Scholar] [CrossRef]
- Nicholson, R. Amazing grace: The cutleaf maples. Arnoldia 1997, 57, 17–24. [Google Scholar] [CrossRef]
- Geoffroy, T.R.; Fortin, Y.; Stevanovic, T. Hot-water extraction optimization of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) bark applying principal component analysis. J. Wood Chem. Technol. 2017, 37, 261–272. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Blackburn, J.; Lada, R.R. A comparative physicochemical analysis of maple (Acer saccharum Marsh.) syrup produced in North America with special emphasis on seasonal changes in Nova Scotia maple syrup composition. J. Food Compos. Anal. 2020, 92, 103573. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Gad, H.A.; Farag, M.A. Chemistry, processing, and functionality of maple food products: An updated comprehensive review. J. Food Biochem. 2021, 45, e13832. [Google Scholar] [CrossRef]
- Perkins, T.D.; Heiligmann, R.B.; Koelling, M.R.; van Den Berg, A.K. North American Maple Syrup Producers Manual, 3rd ed.; The North American Maple Syrup Council, Ed.; The University of Vermont: Burlington, VT, USA, 2022. [Google Scholar]
- Hope, J. Food, care and the sugar maple stand. In Food and Medicine: A Biosemiotic Perspective; Hendlin, Y.H., Hope, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 81–96. [Google Scholar] [CrossRef]
- N’guyen, G.Q.; Roblet, C.; Lagacé, L.; Filteau, M. A metataxonomic analysis of maple sap microbial communities reveals new insights into maple syrup complexity. Front. Syst. Biol. 2022, 2, 893007. [Google Scholar] [CrossRef]
- Perkins, T.D.; van den Berg, A.K. Maple syrup-production, composition, chemistry, and sensory characteristics. Adv. Food Nutr. Res. 2009, 56, 101–143. [Google Scholar] [CrossRef] [PubMed]
- Shugart, H.H.; Crow, T.R.; Hett, J.M. Forest succession models: A rationale and methodology for modeling forest succession over large regions. For. Sci. 1973, 19, 203–212. [Google Scholar] [CrossRef]
- Long, R.P.; Horsley, S.B.; Hallett, R.A.; Bailey, S.W. Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecol. Appl. 2009, 19, 1454–1466. [Google Scholar] [CrossRef]
- St. Clair, S.B.; Lynch, J.P. Differences in the success of sugar maple and red maple seedlings on acid soils are influenced by nutrient dynamics and light environment. Plant Cell Environ. 2005, 28, 874–885. [Google Scholar] [CrossRef]
- Fei, S.; Steiner, K.C. Evidence for increasing red maple abundance in the eastern United States. For. Sci. 2007, 53, 473–477. [Google Scholar] [CrossRef]
- Zhang, Y.; Bergeron, Y.; Zhao, X.H.; Drobyshev, I. Stand history is more important than climate in controlling red maple (Acer rubrum L.) growth at its northern distribution limit in western Quebec, Canada. J. Plant Ecol. 2015, 8, 368–379. [Google Scholar] [CrossRef]
- Hartman, J.P.; Buckley, D.S.; Sharik, T.L. Differential success of oak and red maple regeneration in oak and pine stands on intermediate-quality sites in northern Lower Michigan. For. Ecol. Manag. 2005, 216, 77–90. [Google Scholar] [CrossRef]
- Johnson, J.E.; Haag, C.L.; Bockheim, J.G.; Erdmann, G.G. Soil-site relationships and soil characteristics associated with even-aged red maple (Acer rubrum) stands in Wisconsin and Michigan. For. Ecol. Manag. 1987, 21, 75–89. [Google Scholar] [CrossRef]
- Peters, J.D.J.; Huish, R.D.; Taylor, D.C.; Munson, B.A. Comparative analysis of four maple species for syrup production in south-central Appalachia. J. Agric. Food. Syst. Community. Dev. 2020, 9, 267–276. [Google Scholar] [CrossRef]
- Little, E.L. Conifers and important hardwoods. In Atlas of United States Trees; Miscellaneous Publication 1146; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1971; Volume 1, p. 9. [Google Scholar]
- Kurokawa, S.Y.S.; Bhatt, G.; de Lima Santos, G.; Silvestro, R.; Delagrange, S.; Rossi, S. Measuring natural sap production in sugar maple at daily temporal resolution. iForest 2024, 17, 323–330. [Google Scholar] [CrossRef]
- Marvin, J.W.; Erickson, R.O. A statistical evaluation of some of the factors responsible for the flow of sap from the sugar maple. Plant Physiol. 1956, 31, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, S.Y.S.; Weiss, G.; Lapointe, D.; Delagrange, S.; Rossi, S. Daily timings of sap production in sugar maple in Quebec, Canada. Int. J. Biometeorol. 2023, 67, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Duchesne, L.; Houle, D. Interannual and spatial variability of maple syrup yield as related to climatic factors. PeerJ 2014, 2, e428. [Google Scholar] [CrossRef]
- N’guyen, G.Q.; Martin, N.; Jain, M.; Lagacé, L.; Landry, C.R.; Filteau, M. A systems biology approach to explore the impact of maple tree dormancy release on sap variation and maple syrup quality. Sci. Rep. 2018, 8, 14658. [Google Scholar] [CrossRef]
- Robitaille, G.; Boutin, R.; Lachance, D. Effects of soil freezing stress on sap flow and sugar content of mature sugar maples (Acer saccharum). Can. J. For. Res. 1995, 25, 577–587. [Google Scholar] [CrossRef]
- McGee, C.E. Budbreak for twenty-three upland hardwoods compared under forest canopies and in recent clearcuts. For. Sci. 1986, 32, 924–935. [Google Scholar] [CrossRef]
- Lagacé, L.; Leclerc, S.; Charron, C.; Sadiki, M. Biochemical composition of maple sap and relationships among constituents. J. Food Compos. Anal. 2015, 41, 129–136. [Google Scholar] [CrossRef]
- Ouimet, R.; Duchesne, L.; Moore, J.D. Response of northern hardwoods to experimental soil acidification and alkalinisation after 20 years. For. Ecol. Manag. 2017, 400, 600–606. [Google Scholar] [CrossRef]
- Rapp, J.M.; Lutz, D.A.; Huish, R.D.; Dufour, B.; Ahmed, S.; Morelli, T.L.; Stinson, K.A. Finding the sweet spot: Shifting optimal climate for maple syrup production in North America. For. Ecol. Manag. 2019, 448, 187–197. [Google Scholar] [CrossRef]
- Filteau, M.; Lagacé, L.; LaPointe, G.; Roy, D. Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries. Syst. Appl. Microbiol. 2010, 33, 165–173. [Google Scholar] [CrossRef]
- Jose Garcia, E.; McDowell, T.; Ketola, C.; Jennings, M.; David Miller, J.; Renaud, J.B. Metabolomics reveals chemical changes in Acer saccharum sap over a maple syrup production season. PLoS ONE 2020, 15, e0235787. [Google Scholar] [CrossRef]
- Rolland, F.; Baena-Gonzalez, E.; Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. [Google Scholar] [CrossRef] [PubMed]
- Lagacé, L.; Girouard, C.; Dumont, J.; Fortin, J.; Roy, D. Rapid prediction of maple syrup grade and sensory quality by estimation of microbial quality of maple sap using ATP bioluminescence. J. Food Sci. 2002, 67, 1851–1854. [Google Scholar] [CrossRef]
- Naghski, J.; Willits, C.O. Maple sirup. XI. Relationship between the type and origin of reducing sugars in sap and the color and flavor of maple sirup. J. Food. Sci. 1957, 22, 567–571. [Google Scholar] [CrossRef]
- Hackworth, Z.J.; Lhotka, J.M.; Ochuodho, T.O.; Thomas, W.R. Informing producers in a nontraditional maple syrup region: Red maple and sugar maple production parameters in Kentucky. For. Sci. 2024, 70, 165–178. [Google Scholar] [CrossRef]
- Simard, S.; Giovannelli, A.; Treydte, K.; Traversi, M.L.; King, G.M.; Frank, D.; Fonti, P. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol. 2013, 33, 913–923. [Google Scholar] [CrossRef]
- Steppe, K.; De Pauw, D.J.W.; Lemeur, R.; Vanrolleghem, P.A. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 2006, 26, 257–273. [Google Scholar] [CrossRef]
- Yuan, T.; Li, L.; Zhang, Y.; Seeram, N.P. Pasteurized and sterilized maple sap as functional beverages: Chemical composition and antioxidant activities. J. Funct. Foods 2013, 5, 1582–1590. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garfa, A.; Silvestro, R.; Sassamoto Kurokawa, S.Y.; Rossi, S.; Deslauriers, A.; Lavoie, S. Sugar Maple and Red Maple Face-Off: Which Produces More and Sweeter Sap? Appl. Sci. 2025, 15, 1091. https://doi.org/10.3390/app15031091
Garfa A, Silvestro R, Sassamoto Kurokawa SY, Rossi S, Deslauriers A, Lavoie S. Sugar Maple and Red Maple Face-Off: Which Produces More and Sweeter Sap? Applied Sciences. 2025; 15(3):1091. https://doi.org/10.3390/app15031091
Chicago/Turabian StyleGarfa, Aya, Roberto Silvestro, Sara Yumi Sassamoto Kurokawa, Sergio Rossi, Annie Deslauriers, and Serge Lavoie. 2025. "Sugar Maple and Red Maple Face-Off: Which Produces More and Sweeter Sap?" Applied Sciences 15, no. 3: 1091. https://doi.org/10.3390/app15031091
APA StyleGarfa, A., Silvestro, R., Sassamoto Kurokawa, S. Y., Rossi, S., Deslauriers, A., & Lavoie, S. (2025). Sugar Maple and Red Maple Face-Off: Which Produces More and Sweeter Sap? Applied Sciences, 15(3), 1091. https://doi.org/10.3390/app15031091