The Influence of Monofunctional Silanes on the Mechanical and Rheological Properties of Hot Melt Butyl Rubber Sealants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Preparation of Blends
3. Results and Discussion
3.1. Cone Penetration
3.2. Peel Resistance
3.3. Melt Volume Rate and Density
3.4. Mooney Viscosity and Relaxation Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedek, I. Pressure-Sensitive Formulation; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429070907. [Google Scholar]
- Chang, E.P. Viscoelastic Windows of Pressure-Sensitive Adhesives. J. Adhes. 1991, 34, 189–200. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Liu, A. A Review on Mechanical Properties of Pressure Sensitive Adhesives. Int. J. Adhes. Adhes. 2013, 41, 98–106. [Google Scholar] [CrossRef]
- Kostyuk, A.; Ignatenko, V.; Smirnova, N.; Brantseva, T.; Ilyin, S.; Antonov, S. Rheology and Adhesive Properties of Filled PIB-Based Pressure-Sensitive Adhesives. I. Rheology and Shear Resistance. J. Adhes. Sci. Technol. 2015, 29, 1831–1848. [Google Scholar] [CrossRef]
- Cochrane, H. Seven—Adhesives and Sealants. In Industrial Minerals and Their Uses; Ciullo, P.A., Ed.; William Andrew Publishing: Park Ridge, NJ, USA, 1996; pp. 275–352. [Google Scholar]
- Perova, M.S.; Galimzyanova, R.Y.; Khakimullin, Y.N.; Vol’fson, S.I. Influence of the Molecular Weight of Oligoisobutylenes on the Properties of Uncured Sealants. Int. Polym. Sci. Technol. 2011, 38, 9–11. [Google Scholar] [CrossRef]
- Lisanevich, M.S.; Galimzyanova, R.Y.; Rusanova, S.N.; Khakimullin, Y.N.; Stoyanov, O.V. Hot-Melt Sealants of Curable Type Based on Butyl Rubber and Ethylene–Vinyl Acetate Copolymer. Polym. Sci. Ser. D 2018, 11, 359–362. [Google Scholar] [CrossRef]
- Haworth, J.P.; Baldwin, F.P. Butyl Rubber Properties and Compounding. Ind. Eng. Chem. 1942, 34, 1301–1308. [Google Scholar] [CrossRef]
- Klosowski, J.M.; Wolf, A.T. The History of Sealants. In Handbook of Sealant Technology; CRC Press: Boca Raton, FL, USA, 2009; pp. 15–17. [Google Scholar]
- Higgins, J.J.; Jagisch, F.C.; Stucker, N.E. Butyl Rubber and Polyisobutylene. In Handbook of Adhesives; Skeist, I., Ed.; Springer: Boston, MA, USA, 1990; pp. 185–205. [Google Scholar]
- Rajkiewicz, M.; Ślączka, M.; Czakaj, J. Rubber Technology Compounding and Testing for Performance: Part I-the Butyl Rubber Compounds. Adhesive Properties. In Key Engineering Materials: Current State-of-the-Art on Novel Materials; Taylor & Francis Group: London, UK, 2014; Volume 1, p. 385. [Google Scholar]
- Benedek, I.; Feldstein, M.M. Chapter 1: Construction and Classes of Pressure-Sensitive Products. In Applications of Pressure-Sensitive Products; CRC Press eBooks: Boca Raton, FL, USA, 2008. [Google Scholar]
- Petrie, E.M. Handbook of Adhesives and Sealants, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2021; ISBN 9781260440447. [Google Scholar]
- Czakaj, J. Otrzymywanie Częściowo Usieciowanych Mieszanek Uszczelniających Za Pomocą Wytłaczarki Dwuślimakowej Współbieżnej. Przem. Chem. 2018, 97, 1783–1785. [Google Scholar] [CrossRef]
- Czakaj, J. Kompozytowe Termoplastyczne Uszczelniacze Butylowe o Zwiększonej Odporności Na Wysoką Temperaturę. Przem. Chem. 2018, 97, 1962–1964. [Google Scholar] [CrossRef]
- Czakaj, J.; Rajkiewicz, M. Preparation of Partially Cross-Linked Sealing Compounds by Using a Co-Rotating Twin Screw Extruder. Przem. Chem. 2018, 97, 1783–1785. [Google Scholar]
- Galimzyanova, R.Y.; Lisanevich, M.S.; Khakimullin, Y.N. Effect of Calcium Carbonate on the Properties of Noncuring Sealants Based on Butyl Rubber and Thermoplastics. Russ. J. Appl. Chem. 2013, 86, 1287–1291. [Google Scholar] [CrossRef]
- Dick, J.S.; Rajkiewicz, M.; Ślączka, M.; Czakaj, J. Rubber Technology Compounding and Testing for Performance, 2nd ed.; Carl Hanser Verlag GmbH Co KG: Munich, Germany, 2009. [Google Scholar]
- Murtazina, L.I.; Garifullin, A.R.; Nikul’tsev, I.A.; Fatkhullin, R.F.; Galimzyanova, R.Y.; Khakimullin, Y.N. The Influence of Calcium Carbonate on the Properties of Noncuring Sealants Based on Ethylene Propylene Diene Monomer Rubber and Thermoplastics. Polym. Sci. Ser. D 2015, 8, 199–202. [Google Scholar] [CrossRef]
- Cherkasov, D.V.; Yurkin, Y.V.; Avdonin, V.V. Study of Physical and Mechanical Properties of Non-Polar Rubber-Based Sealants Depending on Filler Type and Volume. Solid. State Phenom. 2017, 265, 422–427. [Google Scholar] [CrossRef]
- Perova, M.S.; Antipov, K.A.; Galimzyanova, R.Y.; Khakimullin, Y.N. Sealing Compositions Based on Butyl Rubber Modified by Reactive Oligomers. Polym. Sci. Ser. D 2012, 5, 26–29. [Google Scholar] [CrossRef]
- Czakaj, J.; Sztorch, B.; Romanczuk-Ruszuk, E.; Brząkalski, D.; Przekop, R.E. Organosilicon Compounds in Hot-Melt Adhesive Technologies. Polymers 2023, 15, 3708. [Google Scholar] [CrossRef] [PubMed]
- Khamani, S.; Mir Mohamad Sadeghi, G.; Talebi, S. Butyl Rubber-Aluminum Adhesion: The Effect of Acidic and Alkaline Environments on Adhesion Strength. J. Polym. Environ. 2018, 26, 989–998. [Google Scholar] [CrossRef]
- Goulding, T.M. Pressure-sensitive adhesives. In Handbook of Adhesive Technology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 825–840. [Google Scholar]
- Petrie, E.M. Standard test methods. In Handbook of Adhesives and Sealants, 2nd ed.; McGraw Hill Professional: New York, NY, USA, 2007; Chapter 4. [Google Scholar]
- Bremner, T.; Hill, D.J.T.; O’Donnell, J.H.; Senake Perera, M.C.; Pomery, P.J. Mechanism of Radiation Degradation of Polyisobutylene. J. Polym. Sci. A Polym. Chem. 1996, 34, 971–984. [Google Scholar] [CrossRef]
- Sawaguchi, T.; Seno, M. Detailed Mechanism and Molecular Weight Dependence of Thermal Degradation of Polyisobutylene. Polymer 1996, 37, 5607–5617. [Google Scholar] [CrossRef]
- Lee, S.R.; Man Bae, K.; Baek, J.J.; Kang, M.C.; Lee, T., II. Adhesion Enhancement between Aluminum and Butyl Rubber by (3-Mercaptopropyl) Trimethoxy Silane for Vibration Damping Plate. J. Adhes. Sci. Technol. 2021, 35, 1114–1124. [Google Scholar] [CrossRef]
- Babu, R.R.; Singha, N.K.; Naskar, K. Dynamically vulcanized blends of polypropylene and ethylene octene copolymer: Influence of various coagents on mechanical and morphological characteristics. J. Appl. Polym. Sci. 2009, 113, 3207–3221. [Google Scholar] [CrossRef]
- Sae-Oui, P.; Sirisinha, C.; Thepsuwan, U.; Hatthapanit, K. Roles of Silane Coupling Agents on Properties of Silica-Filled Polychloroprene. Eur. Polym. J. 2006, 42, 479–486. [Google Scholar] [CrossRef]
- Fukuda, T.; Fujii, S.; Nakamura, Y.; Sasaki, M. Mechanical Properties of Silica Particle-filled Styrene-butadiene Rubber Composites Containing Polysulfide-type Silane Coupling Agents: Influence of Loading Method of Silane. J. Appl. Polym. Sci. 2013, 130, 322–329. [Google Scholar] [CrossRef]
- Kapgate, B.P.; Das, C.; Basu, D.; Das, A.; Heinrich, G.; Reuter, U. Effect of Silane Integrated Sol–Gel Derived in Situ Silica on the Properties of Nitrile Rubber. J. Appl. Polym. Sci. 2014, 131, 40054. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Fan, H.; Jamil, M.I.; Khan, F.U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J. Polym. Environ. 2021, 29, 3427–3443. [Google Scholar] [CrossRef]
- Bi, W.; Guangshui, Y.; Sun, J.; Goegelein, C.; Hoch, M.; Kirchhoff, J.; Zhao, S. Influence of coupling agent on the Bound rubber and Dynamic Properties of aluminum sodium silicates filled HNBR composites. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 022019. [Google Scholar] [CrossRef]
- Prabhu, C.P.; Mohanty, S.; Gupta, V.K. Modification Of Polybutadiene Rubber: A REVIEW. Rubber Chem. Technol. 2021, 94, 410–431. [Google Scholar] [CrossRef]
- Shenoy, A.V.; Saini, D.R. Melt Flow Index: More than Just a Quality Control Rheological Parameter. Part I. Adv. Polym. Technol. 1986, 6, 1–58. [Google Scholar] [CrossRef]
- Shenoy, A.V.; Saini, D.R.; Nadkarni, V.M. Melt Rheology of Polymer Blends from Melt Flow Index. Int. J. Polym. Mater. Polym. Biomater. 1984, 10, 213–235. [Google Scholar] [CrossRef]
- Long, J.M. Rubber Compound Economics. In Rubber Technology; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2009; pp. 69–85. [Google Scholar]
- Steeman, P.A.M.; Palmen, J.H.M. On Mooney and Mooney Stress Relaxation. II. A Nonlinear Viscoelastic Description: Experimental and Numerical Results. J. Appl. Polym. Sci. 1999, 74, 1220–1233. [Google Scholar] [CrossRef]
- Struik, L.C.E. On Mooney Viscosity and Mooney Stress Relaxation. I. J. Appl. Polym. Sci. 1999, 74, 1207–1219. [Google Scholar] [CrossRef]
Ingredient/Sample ID | X-0 | X-1 | X-2.5 | X-5 | X-10 | X-10B |
---|---|---|---|---|---|---|
N100 | 80 | 80 | 80 | 80 | 80 | 80 |
IIR1675 | 20 | 20 | 20 | 20 | 20 | 20 |
PIB32 | 250 | 250 | 250 | 250 | 250 | 250 |
CaCO3 | 450 | 450 | 450 | 450 | 450 | 450 |
X | - | 1 | 2.5 | 5 | 10 | 10 |
BIPB | - | - | - | - | - | 0.2 |
Failure Mode * | ||||||
---|---|---|---|---|---|---|
Modifier/Content [%] | 0 | 1 | 2.5 | 5 | 10 | 10 + 0.1 B |
MPTES | A | A | A | A | A/K | A/K |
GLYEOS | A | A/K | A/K | A/K | A/K | A/K |
VTMOS | A/K | A/K | A/K | A/K | A | A |
APTES | A/K | A | A | A | A/K | - |
Density [g/cm3] | ||||||
---|---|---|---|---|---|---|
Modifier/Content [%] | 0 | 1 | 2.5 | 5 | 10 | 10 + 0.1 B |
MPTES | 1.44 | 1.44 | 1.44 | 1.44 | 1.43 | 1.44 |
GLYEOS | 1.43 | 1.43 | 1.44 | 1.43 | 1.43 | 1.43 |
VTMOS | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 |
APTES | 1.43 | 1.44 | 1.44 | 1.44 | 1.43 | - |
R′ | ||||||
---|---|---|---|---|---|---|
Modifier/Content [%] | 0 | 1 | 2.5 | 5 | 10 | 10 + 0.1 B |
MPTES | 1.40 | 1.42 | 1.46 | 1.43 | 1.38 | 1.40 |
GLYEOS | 1.35 | 1.32 | 1.36 | 1.37 | 1.41 | 1.43 |
VTMOS | 1.39 | 1.33 | 1.26 | 1.3 | 1.32 | 1.27 |
APTES | 1.46 | 1.33 | 1.37 | 1.39 | 1.51 | - |
k (1–10 s) | ||||||
MPTES | 0.1971 | 0.1989 | 0.2004 | 0.1943 | 0.2053 | 0.2036 |
GLYEOS | 0.1967 | 0.1982 | 0.1942 | 0.1982 | 0.2059 | 0.2180 |
VTMOS | 0.1957 | 0.1939 | 0.1982 | 0.1997 | 0.1985 | 0.2238 |
APTES | 0.1912 | 0.1893 | 0.2036 | 0.2025 | 0.2067 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czakaj, J.; Sztorch, B.; Pakuła, D.; Przekop, R.E. The Influence of Monofunctional Silanes on the Mechanical and Rheological Properties of Hot Melt Butyl Rubber Sealants. Appl. Sci. 2025, 15, 1105. https://doi.org/10.3390/app15031105
Czakaj J, Sztorch B, Pakuła D, Przekop RE. The Influence of Monofunctional Silanes on the Mechanical and Rheological Properties of Hot Melt Butyl Rubber Sealants. Applied Sciences. 2025; 15(3):1105. https://doi.org/10.3390/app15031105
Chicago/Turabian StyleCzakaj, Jakub, Bogna Sztorch, Daria Pakuła, and Robert E. Przekop. 2025. "The Influence of Monofunctional Silanes on the Mechanical and Rheological Properties of Hot Melt Butyl Rubber Sealants" Applied Sciences 15, no. 3: 1105. https://doi.org/10.3390/app15031105
APA StyleCzakaj, J., Sztorch, B., Pakuła, D., & Przekop, R. E. (2025). The Influence of Monofunctional Silanes on the Mechanical and Rheological Properties of Hot Melt Butyl Rubber Sealants. Applied Sciences, 15(3), 1105. https://doi.org/10.3390/app15031105