The Influence of Wind Speed on Pneumatic Conveying Characteristics of Solid Feed in Horizontal Pipe by Simulation and Experiment
Abstract
:1. Introduction
2. Computational Fluid Dynamics and Discrete Element Method
3. Mathematical Model
3.1. Particle Suspension Velocity
- (1)
- Viscous resistance zone
- (2)
- Transition region
- (3)
- Pressure difference resistance zone
3.2. Governing Equation of Gas–Solid Phases
3.3. The Force Between Gas and Particles
4. Simulation of Pneumatic Conveying
4.1. Model Construction and Grid Division
4.2. Setting of Pipeline Parameters and Basic Working Conditions
4.3. Influence of Different Wind Speeds on Conveying Characteristics
4.3.1. Effect of Conveying Wind Speed on Distribution State of Solid Feed in Tube
4.3.2. Particle Mass Distribution in Conveying Pipes at Different Wind Speeds
4.3.3. Influence of Conveying Wind Speed on Average Speed and Pressure Drop of Solid Feed
4.3.4. Influence of Conveying Wind Speed on Particle Coupling Force
5. Experimental Analysis
5.1. Experimental Media
5.2. Experimental Equipment
5.3. Experimental Process
5.4. Experimental Results and Analysis
5.4.1. Distribution of Solid Feed in Pipes
5.4.2. Particle Slug in Pipe
5.4.3. Measurement of Average Velocity of Suspended Solid Feed
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Hu, X. Factors Influencing Disease Prevention and Control Behaviours of Hog Farmers. Animals 2023, 13, 787. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; Shen, Y.; Amètépé Nathanaël Beauclair, A. The Effect of Hog Futures in Stabilizing Hog Production. Agriculture 2024, 14, 335. [Google Scholar] [CrossRef]
- Lin, J.; Lou, J. Research Status and Development Trend of Pneumatic Conveying System. Light Ind. Mach. 2008, 4–7. [Google Scholar]
- Tripathi, N.M.; Portnikov, D.; Levy, A.; Kalman, H. Bend pressure drop in horizontal and vertical dilute phase pneumatic conveying systems. Chem. Eng. Sci. 2019, 209, 115228. [Google Scholar] [CrossRef]
- Sharma, A.; Mallick, S.S. An investigation into pressure drop through bends in pneumatic conveying systems. Part. Sci. Technol. 2021, 39, 180–191. [Google Scholar] [CrossRef]
- Beaulac, P.; Issa, M.; Ilinca, A.; Brousseau, J. Parameters Affecting Dust Collector Efficiency for Pneumatic Conveying: A Review. Energies 2022, 15, 916. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, C.; Yuan, S.; Lou, S. Research on movement characteristic parameters of MSW under pneumatic conveying environment. Int. J. Environ. Sci. Technol. 2024, 21, 5743–5758. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, L.; Ma, H.; Ma, G.; Li, P.; Gao, K. Study on flow characteristics of vertical pneumatic conveying of stiff shotcrete materials based on CFD-DEM. Powder Technol. 2024, 383, 119716. [Google Scholar] [CrossRef]
- Ranjbari, P.; Emamzadeh, M.; Mohseni, A. Numerical analysis of particle injection effect on gas-liquid two-phase flow in horizontal pipelines using coupled MPPIC-VOF method. Adv. Powder Technol. 2023, 11, 104235. [Google Scholar] [CrossRef]
- Wypych, P.W. Dense-Phase Pneumatic Conveying Technology for Highly Explosive Metal Powders. Part. Sci. Technol. 2007, 26, 15–22. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Hu, Z. Research on the Pressure Dropin Horizontal Pneumatic Conveying for Large Coal Particles. Processes 2020, 8, 650. [Google Scholar] [CrossRef]
- Ma, G.; Ma, H.; Sun, Z. Simulation of Two-Phase Flow of Shotcrete in a Bent Pipe Based on a CFD–DEM Coupling Model. Appl. Sci. 2022, 12, 3530. [Google Scholar] [CrossRef]
- Wang, Y.; Williams, K.; Jones, M.; Chen, B. CFD simulation methodology for gas-solid flow in bypass pneumatic conveying—A review. Appl. Therm. Eng. 2017, 125, 185–208. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, Y. CFD-DEM simulation of pneumatic conveying in a horizontal pipe. Powder Technol. 2020, 373, 58–72. [Google Scholar] [CrossRef]
- Iqbal, N.; Rauh, C. Coupling of discrete element model (DEM) with computational fluid mechanics (CFD): A validation study. Appl. Math. Comput. 2016, 277, 154–163. [Google Scholar] [CrossRef]
- Yang, D.; Li, G.; Wang, Y.; Wang, Q.; Li, J.; Huang, Q.; Xia, Y.; Li, Q. Prediction of Horizontal Pneumatic Conveying of Large Coal Particles Using Discrete Phase Model. Adv. Mater. Sci. Eng. 2020, 2020, 1967052. [Google Scholar] [CrossRef]
- Zhou, J.; Ba, H.; Yan, X.; Shangguan, L. Solid friction coefficient in a horizontal straight pipe of pneumatic conveying. Chem. Eng. Res. Des. 2023, 196, 577–587. [Google Scholar] [CrossRef]
- Miao, Z.; Kuang, S.; Zughbi, H.; Yu, A. Numerical simulation of dense-phase pneumatic transport of powder in horizontal pipes. Powder Technol. 2020, 361, 62–73. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems:theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Oschmann, T.; Vollmari, K.; Kruggel-Emden, H.; Wirtz, S. Numerical investigation of the mixing of non-spherical particles in fluidized beds and during pneumatic con-veying. Procedia Eng. 2015, 102, 976–985. [Google Scholar] [CrossRef]
- Van Wachem, B.; Zastawny, M.; Zhao, F.; Mallouppas, G. Modelling of gas–solid tur-bulent channel flow with non-spherical particles with large stokes numbers. Int. J. Multiph. Flow 2015, 68, 80–92. [Google Scholar] [CrossRef]
- Du, F.; Guo, Y.; Wang, L.; Xu, C.; Zhou, A.; Wang, G. EDEM-FLUENT coupled simulation of coal-gas outburst two-phase flow. Energy Explor. Exploit. 2021, 39, 1786–1802. [Google Scholar] [CrossRef]
- Alihosseini, M.; Thamsen, P.U. Analysis of sediment transport in sewer pipes using a coupled CFD-DEM model and experimental work. Urben Water J. 2019, 16, 259–268. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, Z.; Niu, F.; Zhang, H.; Bu, Z.; Zheng, K.; Ma, X. EDEM and FLUENT Parameter Finding and Verification Study of Thickener Based on Genetic Neural Network. Minerals 2023, 13, 840. [Google Scholar] [CrossRef]
- Drame, A.S.; Wang, L.; Zhang, Y. Granular Stack Density’s Influence on Homogeneous Fluidization Regime: Numerical Study Based on EDEM-CFD Coupling. Appl. Sci. 2021, 11, 8696. [Google Scholar] [CrossRef]
- Alihosseini, M.; Sægrov, S.; Thamsen, P.U. CFD-DEM modelling of sediment transport in sewer systems under steady and unsteady flow conditions. Water Sci. Technol. 2019, 80, 2141–2147. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Li, B.; Jia, Z.; Jiao, S.; Ma, H. Study on the Influence of Different Factors on Pneumatic Conveying in Horizontal Pipe. Appl. Sci. 2023, 13, 5483. [Google Scholar] [CrossRef]
- Kalman, H.; Satran, A.; Meir, D.; Rabinovich, E. Pickup (critical) velocity of particles. Powder Technol. 2005, 160, 103–113. [Google Scholar] [CrossRef]
- Yang, L.; Xie, Y.H. Pneumatic Conveying Engineering, 1st ed.; China Machine Press: Beijing, China, 2006; pp. 79–89. [Google Scholar]
- Li, S.J.; Zhou, X.J. Theory and Application of Pneumatic Conveying, 1st ed.; China Machine Press: Beijing, China, 1992; pp. 49–68. [Google Scholar]
- Di, Y.; Zhao, L.; Mao, J. A resolved CFD-DEM method based on the IBM for sedimentation of dense fluid-particle flows. Comput. Fluids 2021, 226, 104968. [Google Scholar] [CrossRef]
- Ming, J.; Wang, Z. Coupled CFD-DEM method for soils incorporating equation of state for liquid. Chin. J. Geotech. Eng. 2014, 36, 793–801. [Google Scholar]
- Zhou, N.R.; Zhu, F.D. Pneumatic Conveying Principle and Design Calculation; Henan Science and Technology Press: Zhengzhou, China, 1981. [Google Scholar]
Density (kg/m3) | 1190 |
Poisson ratio | 0.32 |
Shear modulus (Pa) | 1.07 × 109 |
Density (kg/m3) | Poisson Ratio | Shear Modulus (Pa) | Collision Recovery Coefficient | Coefficient of Sliding Friction | Coefficient of Rolling Friction |
---|---|---|---|---|---|
800 | 0.4 | 3.93 × 107 | 0.53 | 0.41 | 0.08 |
Conveying wind speed (m/s) | 15.5 | 16.9 | 17.5 | 20.6 | 25.8 |
Motor frequency (Hz) | 28.9 | 32.3 | 34.1 | 38.7 | 48.7 |
Distance from the accumulation to the entrance (m) | 3.4 | 6.1 | None | None | None |
Conveying wind speed (m/s) | 15.5 | 16.9 | 17.5 | 20.6 | 25.8 |
Mass flow rate (kg/s) | 0.128 | 0.239 | 0.288 | 0.288 | 0.288 |
Particle numbering | 1 | 2 | 3 | 4 | 5 |
Movement distance (m) | 0.291 | 0.253 | 0.272 | 0.259 | 0.261 |
Movement time (s) | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 |
Speed (m/s) | 9.09 | 7.91 | 8.50 | 8.09 | 8.12 |
Average speed (m/s) | 8.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Jiao, S.; Wang, Z.; Guo, P.; Ma, H.; Li, B.; Zhang, W.; Lv, W.; Fu, X.; Wang, S.; et al. The Influence of Wind Speed on Pneumatic Conveying Characteristics of Solid Feed in Horizontal Pipe by Simulation and Experiment. Appl. Sci. 2025, 15, 1109. https://doi.org/10.3390/app15031109
Wang C, Jiao S, Wang Z, Guo P, Ma H, Li B, Zhang W, Lv W, Fu X, Wang S, et al. The Influence of Wind Speed on Pneumatic Conveying Characteristics of Solid Feed in Horizontal Pipe by Simulation and Experiment. Applied Sciences. 2025; 15(3):1109. https://doi.org/10.3390/app15031109
Chicago/Turabian StyleWang, Chengming, Shihui Jiao, Zhuoyao Wang, Pengfei Guo, Hao Ma, Baojun Li, Weiwei Zhang, Wei Lv, Xingyuan Fu, Shuaihao Wang, and et al. 2025. "The Influence of Wind Speed on Pneumatic Conveying Characteristics of Solid Feed in Horizontal Pipe by Simulation and Experiment" Applied Sciences 15, no. 3: 1109. https://doi.org/10.3390/app15031109
APA StyleWang, C., Jiao, S., Wang, Z., Guo, P., Ma, H., Li, B., Zhang, W., Lv, W., Fu, X., Wang, S., Dong, C., Guo, G., & Wang, H. (2025). The Influence of Wind Speed on Pneumatic Conveying Characteristics of Solid Feed in Horizontal Pipe by Simulation and Experiment. Applied Sciences, 15(3), 1109. https://doi.org/10.3390/app15031109