Portuguese Traditional Dry-Fermented Sausages Processed with Liquid Smoke Flavoring: How This Alternative Technology Affects Proteolysis and Biogenic Amines Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sausage Technology and Sampling Procedures
2.3. Physicochemical and Proteolysis Characterization
2.4. Amino Acid Profile
2.5. Biogenic Amines Profile
2.6. Statistical Analysis
3. Results
3.1. Physicochemical and Proteolysis Characterization
3.2. Amino Acid Profile
3.3. Biogenic Amines Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallego, M.; Mora, L.; Escudero, E.; Toldra, F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int. J. Food Microbiol. 2018, 276, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Stadnik, J.; Stasiak, D.M.; Wójciak, K.; Lorenzo, J.M. Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int. J. Food Sci. Technol. 2021, 56, 6142–6156. [Google Scholar] [CrossRef]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fernandes, M.H.; et al. Characterisation of “Catalão” and “Salsichão” Portuguese traditional sausages with salt reduction. Meat Sci. 2016, 116, 34–42. [Google Scholar] [CrossRef]
- Paglarini, C.S.; Vidal, V.A.S.; Martini, S.; Cunha, R.L.; Pollonio, M.A.R. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Desvita, H.; Faisal, M.; Mahidin, M. Suhendrayatna, Natural antimicrobial properties of liquid smoke derived from cocoa pod shells in meatball preservation. S. Afr. J. Chem. Eng. 2023, 46, 106–111. [Google Scholar]
- Roseiro, L.C.; Santos, C.; Sol, M.; Borges, M.J.; Anjos, M.; Goncalves, H.; Carvalho, A.S. Proteolysis in Painho de Portalegre dry fermented sausage in relation to ripening time and salt content. Meat Sci. 2008, 79, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Aristoy, M.C.; Toldrá, F. Deproteinization techniques for HPLC amino acid analysis in fresh pork muscle and dry-cured ham. J. Agric. Food Chem. 1991, 39, 1792–1795. [Google Scholar] [CrossRef]
- Antoine, F.R.; Wei, C.I.; Littell, R.C.; Marshall, M.R. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 1999, 47, 5100–5107. [Google Scholar] [CrossRef] [PubMed]
- Roseiro, L.C.; Santos, C.; Sol, M.; Silva, L.; Fernandes, I. Prevalence of biogenic amines during ripening of a traditional dry fermented pork sausage and its relation to the amount of sodium chloride added. Meat Sci. 2006, 74, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, M.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Fraqueza, M.J.; Elias, M. Effects of genotype, salt content and calibre on quality of traditional dry-fermented sausages. Food Control 2015, 56, 119–127. [Google Scholar] [CrossRef]
- Toldrá, F.; Aristoy, M.C.; Flores, M. Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Res. Int. 2000, 33, 181–185. [Google Scholar] [CrossRef]
- Toldrá, F. The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends Food Sci. Technol. 2006, 17, 164–168. [Google Scholar] [CrossRef]
- Virgili, R.; Saccani, G.; Gabba, L.; Tanzi, E.; Soresi Bordini, C. Changes of free amino acids and biogenic amines during extended ageing of Italian dry-cured ham. LWT-Food Sci. Technol. 2007, 40, 871–878. [Google Scholar] [CrossRef]
- Loffi, C.; Cirlini, M.; Cavalca, N.; Saccani, G.; Virgili, R.; Galaverna, G.; Tedeschi, T. Changes in proteolysis and volatile fraction of nitrite-free Italian-type salami modified in formulation and processing. Int. J. Food Sci. Technol. 2024, 59, 5587–5597. [Google Scholar] [CrossRef]
- Santos, C.; Roseiro, L.C.; Gomes, A.; Gonçalves, H.; Sol, M.; Partidário, A. Influence of curing salts and storage conditions in proteolysis and lipid oxidation stability of a low acidity dry fermented sausage produced with DFD meat. J. Food Process. Technol. 2012, 3, 153. [Google Scholar]
- Premi, L.; Rocchetti, G.; Lucini, L.; Morelli, L.; Rebecchi, A. Replacement of nitrates and nitrites in meat-derived foods through the utilization of coagulase-negative staphylococci: A review. Curr. Res. Food Sci. 2024, 8, 100731. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, R.; Franco, D.; Carballo, J.; Sentandreu, M.Á.; Lorenzo, J.M. Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Res. Int. 2014, 56, 226–235. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Bover-Cid, S.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Amino acid availability as an influential factor on the biogenic amine formation in dry fermented sausages. Food Control 2014, 36, 76–81. [Google Scholar] [CrossRef]
- Schirone, M.; Esposito, L.; D’Onofrio, F.; Visciano, P.; Martuscelli, M.; Mastrocola, D.; Paparella, A. Biogenic amines in meat and meat products: A review of the science and future perspectives. Foods 2022, 11, 788. [Google Scholar] [CrossRef]
- Turna, N.S.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Torriani, S.; Gatto, V.; Tofalo, R.; Suzzi, G.; Belletti, N.; Gardini, F. Relationships between microbial population dynamics and putrescine and cadaverine accumulation during dry fermented sausage ripening. J. Appl. Microbiol. 2009, 106, 1397–1407. [Google Scholar] [CrossRef]
- Çiçek, Ü.; Tokatli, K. Biogenic amine formation in “Bez Sucuk”, a type of Turkish traditional fermented sausage produced with different meat: Fat ratios. Korean J. Food Sci. Anim. Resour. 2018, 38, 152–161. [Google Scholar]
- Barbieri, F.; Tabanelli, G.; Comas-Basté, O.; Latorre-Moratalla, M.; Angelucci, C.; Gardini, F.; Montanari, C.; García-López, J.D.; Baños, A. Improvement of the safety of artisanal Spanish fermented sausages: Spotlight on the role of bacteriocinogenic Lactiplantibacillus paraplantarum against a Companilactobacillus alimentarius histaminogenic strain. Food Control 2025, 168, 110962. [Google Scholar] [CrossRef]
- Alves, S.P.; Alfaia, C.M.; Škrbić, B.D.; Živančev, J.R.; Fernandes, M.J.; Bessa, R.J.B.; Fraqueza, M.J. Screening chemical hazards of dry fermented sausages from distinct origins: Biogenic amines, polycyclic aromatic hydrocarbons and heavy elements. J. Food Compos. Anal. 2017, 59, 124–131. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Comas-Baste, O.; Bover-Cid, S.; Vidal-Carou, M.C. Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population. Food Chem. Toxicol. 2017, 99, 78–85. [Google Scholar] [CrossRef]
- Fernández, M.; Linares, D.M.; Rodríguez, A.; Alvarez, M.A. Factors affecting tyramine production in Enterococcus durans IPLA 655. Appl. Microbiol. Biotechnol. 2007, 73, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Alfaia, C.M.; Irani, M.G.; Fernandes, M.H.; Fernandes, M.J.; Barreto, A.S. In Biogenic amines production by Lactobacillus, Staphylococcus and Enterococcus isolated from portuguese fermented/smoked meat products. In Proceedings of the 59th International Congress of Meat Science and Technology, Izmir, Turkey, 18–23 August 2013. [Google Scholar]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of starter cultures on the safety of fermented meat products. Front. Microbiol. 2019, 10, 853. [Google Scholar] [CrossRef]
- Brustolin, A.P.; Soares, J.M.; Muraro, K.; Schwert, R.; Steffens, C.; Cansian, R.L.; Valduga, E. Investigating antimicrobial and antioxidant activity of liquid smoke and physical-chemical stability of bacon subjected to liquid smoke and conventional smoking. J. Food Sci. 2024, 89, 7217–7227. [Google Scholar] [CrossRef]
- Abell, L.M.; Marion, H.O.L. Isotope effect studies of the pyridoxal 5′-phosphate dependent histidine decarboxylase from Morganella morganii. Biochemistry 1988, 27, 5927–5933. [Google Scholar] [CrossRef] [PubMed]
- Stadnik, J.; Dolatowski, Z.J. Biogenic amines in meat and fermented meat products. Acta Sci. Pol. Technol. Aliment. 2010, 9, 251–263. [Google Scholar]
- Martuscelli, M.; Pittia, P.; Casamassima, L.M.; Manetta, A.C.; Lupieri, L.; Neri, L. Effect of intensity of smoking treatment on the free amino acids and biogenic amines occurrence in dry cured ham. Food Chem. 2009, 116, 955–962. [Google Scholar] [CrossRef]
- Pereira, C.I.; San Romao, M.V.; Lolkema, J.S.; Crespo, M.T. Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine. J. Appl. Microbiol. 2009, 107, 1894–1902. [Google Scholar] [CrossRef]
- Landete, J.M.; Arena, M.E.; Pardo, I.; Manca de Nadra, M.C.; Ferrer, S. Comparative survey of putrescine production from agmatine deamination in different bacteria. Food Microbiol. 2008, 25, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Ekici, K.; Omer, A.K. The determination of some biogenic amines in Turkish fermented sausages consumed in Van. Toxicol. Rep. 2018, 5, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Ikonic, P.; Jokanovic, M.; Peulic, T.; Cucevic, N.; Tomicic, Z.; Skaljac, S.; Ivic, M. Evolution of amino acids and biogenic amines in traditional dry-fermented sausage Sjenički sudžuk during processing. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012021. [Google Scholar] [CrossRef]
- Li, L.; Zou, D.; Ruan, L.; Wen, Z.; Chen, S.; Xu, L.; Wei, X. Evaluation of the biogenic amines and microbial contribution in traditional Chinese sausages. J. Food Sci. 2019, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Serio, A.; Laika, J.; Maggio, F.; Sacchetti, G.; D’Alessandro, F.; Rossi, C.; Martuscelli, M.; Chaves-Lopez, C.; Paparella, A. Casing contribution to proteolytic changes and biogenic amines content in the production of an artisanal naturally fermented fry sausage. Foods 2020, 9, 1286. [Google Scholar] [CrossRef]
- Roseiro, L.C.; Gomes, A.; Goncalves, H.; Sol, M.; Cercas, R.; Santos, C. Effect of processing on proteolysis and biogenic amines formation in a Portuguese traditional dry-fermented ripened sausage “Chourico Grosso de Estremoz e Borba PGI”. Meat Sci. 2010, 84, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Eerola, S.; Sagués, A.; Hirvi, T. Biogenic amines in finnish dry sausages. J. Food Saf. 1998, 18, 127–138. [Google Scholar] [CrossRef]
- Kalač, P. Biologically active polyamines in beef, pork and meat products: A review. Meat Sci. 2006, 73, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Genccelep, H.; Kaban, G.; Kaya, M. Effects of starter cultures and nitrite levels on formation of biogenic amines in sucuk. Meat Sci. 2007, 77, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Papavergou, E.J.; Savvaidis, I.N.; Ambrosiadis, I.A. Levels of biogenic amines in retail market fermented meat products. Food Chem. 2012, 135, 2750–2755. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Mariné-Font, A.; Vidal-Carou, M.C. Biogenic amine and polyamine contents in meat and meat products. J. Agric. Food Chem. 1997, 45, 2098–2102. [Google Scholar] [CrossRef]
- Paulsen, P.; Bauer, F. Spermine and spermidine concentrations in pork loin as affected by storage, curing and thermal processing. Eur. Food Res. Technol. 2006, 225, 921–924. [Google Scholar] [CrossRef]
- Durak-Dados, A.; Michalski, M.; Osek, J. Histamine and other biogenic amines in food. J. Vet. Res. 2020, 64, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Izquierdo-Pulido, M.; Carmen Vidal-Carou, M. Changes in biogenic amine and polyamine contents in slightly fermented sausages manufactured with and without sugar. Meat Sci. 2001, 57, 215–221. [Google Scholar] [CrossRef]
Batch A | Batch B | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | LSF (Spraying) | Control | LSF (Mixing) | |||||||||||||
RM | FP | 1M | 3M | RM | FP | 1M | 3M | RM | FP | 1M | 3M | RM | FP | 1M | 3M | |
pH | 6.05 j ± 0.01 | 5.60 b,c,d ± 0.00 | 5.57 b,c ± 0.02 | 5.56 b ± 0.01 | 6.05 j ± 0,01 | 5.61 c,d ± 0.00 | 5.63 d ± 0.01 | 5.64 d,e ± 0.02 | 5.90 h ± 0.00 | 5.49 a ± 0.01 | 5.49 a ± 0.01 | 5.51 b ± 0.02 | 5.98 i ± 0.01 | 5.76 g ± 0.01 | 5.68 e,f ± 0.02 | 5.70 f ± 0.00 |
NPN (mg/g) | 6.24 a,b ± 0.11 | 6.01 a ± 0.02 | 6.57 c,d ± 0.08 | 7.21 h,i ± 0.12 | 6.24 a,b ± 0.11 | 6.11 a ± 0.07 | 6.53 c,d ± 0.03 | 6.78 d,e,f ± 0.04 | 6.68 d,e ± 0.07 | 7.00 f,g,h ± 0.04 | 6.86 e,f,g ± 0.03 | 7.85 j ± 0.05 | 6.40 b,c ± 0.04 | 6.93 e,f,g ± 0.01 | 7.10 g,h ± 0.07 | 7.47 i ± 0.05 |
TVBN (mg/g) | 0.25 a ± 0.00 | 0.47 c,d ± 0.02 | 0.51 d,e,f ± 0.02 | 0.54 f,g ± 0.00 | 0.25 a ± 0.00 | 0.43 c ± 0.02 | 0.51 d,e,f ± 0.00 | 0.62 h,i ± 0.01 | 0.48 c,d,e ± 0.00 | 0.57 g,h ± 0.02 | 0.75 j ± 0.02 | 0.78 j ± 0.02 | 0.37 b ± 0.03 | 0.51 d,e,f ± 0.00 | 0.53 e,f,g ± 0.02 | 0.64 i ± 0.02 |
Batch A | Batch B | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | LSF (Spraying) | Control | LSF (Mixing) | |||||||||||||
RM | FP | 1M | 3M | RM | FP | 1M | 3M | RM | FP | 1M | 3M | RM | FP | 1M | 3M | |
Aspasrtic acid | ND | ND | 0.33 a,b ± 0.10 | 2.38 c ± 0.52 | ND | 0.18 a,b ± 0.07 | 0.35 a,b ± 0.12 | 1.02 b ± 0.60 | ND | ND | 0.01 a ± 0.00 | 0.82 a,b ± 0.10 | ND | 0.09 a ± 0.01 | 0.16 a ± 0.05 | 0.15 a ± 0.07 |
Glutamic acid | 7.94 a ± 0.27 | 28.44 c,d ± 2.61 | 35.70 e ± 1.50 | 51.75 h ± 3.48 | 7.94 a ± 0.27 | 26.98 c ± 2.94 | 34.58 d,e ± 2.00 | 45.76 g,h ± 3.15 | 14.83 a,b ± 1.51 | 35.05 d,e ± 2.90 | 36.69 e,f ± 2.36 | 43.58 f,g ± 2.13 | 17.56 b ± 1.74 | 33.07 c,d,e ± 2.35 | 43.62 f,g ± 3.32 | 51.55 h ± 1.87 |
Serine | 10.55 a ± 0.90 | 33.41 d ± 1.77 | 46.73 e,f ± 1.85 | 67.39 g ± 4.41 | 10.55 a ± 0.90 | 38.33 d,e ± 4.19 | 48.00 f ± 4.47 | 61.57 g ± 7.25 | 15.41 a,b,c ± 2.04 | 16.39 a,b,c ± 0.99 | 21.12 b,c ± 1.95 | 24.09 c ± 0.52 | 17.74 a,b,c ± 1.78 | 17.81 a,b,c ± 1.74 | 12.99 a,b ± 0.79 | 18.34 a,b,c ± 0.84 |
Glutamine | 112.10 g ± 6.49 | 90.98 f ± 8.15 | 78.68 e,f ± 4.26 | 67.31 d,e ± 5.05 | 112.10 g ± 6.49 | 91.13 f ± 7.43 | 81.47 e,f ± 1.44 | 57.74 c,d ± 11.51 | 73.66 d,e,f ± 3.70 | 38.43 b ± 0.48 | 25.19 a,b ± 2.47 | 12.71 a ± 0.43 | 74.70 d,e,f ± 6.59 | 39.53 b,c ± 7.79 | 29.30 a,b ± 8.50 | 15.70 a ± 0.55 |
Histidine | 6.68 a ± 0.35 | 28.13 b,c,d ± 1.76 | 34.40 c,d,e ± 1.37 | 51.64 h ± 3.71 | 6.68 a ± 0.35 | 26.32 b,c ± 2.71 | 34.21 c,d,e ± 3.44 | 44.67 g,h ± 6.56 | 12.29 a ± 1.73 | 35.69 d,e,f ± 2.82 | 41.75 e,f,g ± 3.15 | 49.70 g,h ± 1.40 | 13.13 a ± 1.31 | 23.28 b ± 2.16 | 29.93 b,c,d ± 2.92 | 42.84 f,g ± 1.66 |
Threonine | 9.98 a ± 0.57 | 30.11 d,e ± 1.83 | 35.50 e ± 1.31 | 50.15 f ± 3.40 | 9.98 a ± 0.57 | 28.50 c,d,e ± 2.87 | 35.95 e ± 3.17 | 47.43 f ± 9.50 | 15.75 a,b ± 2.80 | 17.58 a,b ± 0.65 | 19.61 a,b,c ± 3.27 | 22.89 b,c,d ± 4.02 | 18.50 a,b,c ± 2.67 | 24.08 b,c,d ± 3.49 | 24.43 b,c,d ± 2.23 | 31.66 d,e ± 2.37 |
Glycine | 23.17 a ± 1.59 | 44.10 c,d,e,f ± 2.90 | 47.48 d,e,f,g ± 2.37 | 61.82 h ± 4.49 | 23.17 a ± 1.59 | 37.65 b,c,d ± 4.28 | 47.66 d,e,f,g ± 5.43 | 55.61 f,g,h ± 8.45 | 26.12 a,b ± 5.67 | 48.36 d,e,f,g ± 3.33 | 53.11 e,f,g,h ± 3.73 | 59.77 g,h ± 1.44 | 31.73 a,b,c ± 2.96 | 37.67 b,c,d ± 5.20 | 42.05 c,d,e ± 3.03 | 52.48 e,f,g,h ± 2.34 |
Taurine | 10.47 e ± 0.58 | 2.90 a,b,c ± 0.19 | 2.34 a,b ± 0.08 | 2.37 a,b ± 0.15 | 10.47 e ± 0.58 | 1.78 a ± 0.09 | 2.04 a ± 0.13 | 2.19 a ± 0.27 | 10.49 e ± 0.15 | 3.55 b,c,d ± 0.24 | 3.81 c,d ± 0.18 | 3.82 c,d ± 0.07 | 13.22 f ± 1.34 | 3.65 b,c,d ± 0.51 | 4.57 d ± 0.29 | 4.75 d ± 0.26 |
Alanine | 210.93 a,b ± 13.57 | 211.54 a,b ± 12.67 | 203.33 a ± 9.02 | 198.90 a ± 12.21 | 210.93 a,b ± 13.57 | 201.16 a ± 20.76 | 221.23 a,b,c,d ± 19.89 | 210.04 a ± 34.09 | 213.99 a,b,c ± 34.17 | 232.65 a,b,c,d ± 14.89 | 235.72 a,b,c,d ± 17.57 | 236.73 a,b,c,d ± 3.65 | 318.66 e ± 33.50 | 278.59 b,c,d,e ± 40.49 | 279.87 c,d,e ± 23.35 | 282.26 d,e ± 15.13 |
Arginine | 92.46 a ± 6.12 | 176.70 c,d,e ± 12.24 | 189.67 d,e,f ± 7.68 | 234.02 f,g ± 15.14 | 92.46 a ± 6.12 | 152.71 b,c,d ± 15.64 | 195.52 d,e,f ± 20.70 | 225.68 e,f,g ± 33.19 | 106.19 a,b ± 19.55 | 263.11 g,h,i ± 16.72 | 287.74 h,i ± 22.20 | 311.54 i ± 6.45 | 131.11 a,b,c ± 13.07 | 177.96 c,d,e ± 20.91 | 206.76 e,f ± 12.65 | 258.51 g,h ± 12.88 |
Tyrosine | 3.12 b,c ± 0.31 | 17.33 e ± 1.25 | 14.99 e ± 0.57 | 16.38 e ± 0.41 | 3.12 b,c ± 0.31 | 15.72 e ± 1.73 | 15.34 e ± 1.93 | 11.81 d ± 1.32 | 0.99 a,b ± 0.87 | 0.01 a ± 0.01 | 0.06 a ± 0.08 | 0.06 a ± 0.10 | 3.77 c ± 0.69 | 2.04 a,b,c ± 0.18 | 0.89 a,b ± 0.77 | 0.49 a,b ± 0.80 |
Methionine | 3.31 a ± 0.15 | 20.82 b,c ± 1.10 | 26.17 d,e,f ± 0.73 | 36.01 g,h ± 2.43 | 3.31 a ± 0.15 | 18.39 b,c ± 1.47 | 22.79 c,d,e ± 2.10 | 27.85 e,f ± 4.16 | 6.18 a ± 1.02 | 29.28 f ± 1.16 | 34.90 g ± 3.33 | 40.71 h ± 0.95 | 6.87 a ± 0.59 | 16.82 b ± 0.78 | 22.22 c,d ± 1.24 | 30.81 f,g ± 0.97 |
Valine | 8.46 a ± 0.47 | 41.38 b,c,d ± 2.35 | 51.77 d,e,f ± 2.16 | 75.04 h,i ± 5.16 | 8.46 a ± 0.47 | 37.65 b,c ± 3.66 | 47.34 c,d,e ± 4.95 | 61.73 f,g ± 8.72 | 13.76 a ± 1.81 | 58.07 e,f,g ± 2.94 | 68.02 g,h ± 6.01 | 80.93 i ± 2.03 | 15.34 a ± 1.42 | 34.19 b ± 2.00 | 44.91 b,c,d ± 3.74 | 63.57 g ± 2.30 |
Thryptophan | 1.49 a ± 0.14 | 9.61 c,d ± 0.83 | 11.87 c,d,e ± 0.43 | 16.84 f ± 1.49 | 1.49 a ± 0.14 | 8.77 b,c,d ± 0.79 | 11.35 c,d,e ± 1.33 | 14.83 e,f ± 2.89 | 3.21 a ± 1.48 | 13.00 d,e,f ± 0.32 | 16.67 f ± 2.75 | 16.71 f ± 0.33 | 4.14 a,b ± 0.68 | 8.14 b,c ± 1.31 | 10.17 c,d,e ± 0.52 | 17.37 f ± 3.72 |
Phenylalanine | 5.81 a ± 0.28 | 36.43 c ± 2.16 | 46.34 d,e ± 2.04 | 64.76 g ± 4.25 | 5.81 a ± 0.28 | 30.96 b,c ± 2.98 | 39.08 c,d ± 4.23 | 48.58 d,e ± 6.35 | 9.70 a ± 1.41 | 50.65 e,f ± 2.84 | 60.06 f,g ± 6.01 | 68.94 g ± 1.49 | 10.91 a ± 0.88 | 25.92 b ± 1.81 | 35.07 b,c ± 2.99 | 50.76 e,f ± 1.56 |
Isoleucine | 3.99 a ± 0.32 | 32.66 c ± 1.92 | 42.02 d,e ± 1.76 | 59.91 g,h ± 4.30 | 3.99 a ± 0.32 | 28.98 b,c ± 2.99 | 36.71 c,d ± 3.79 | 46.74 e,f ± 6.82 | 7.11 a ± 1.04 | 44.21 d,e ± 2.36 | 53.23 f,g ± 4.70 | 63.87 h ± 1.42 | 8.11 a ± 0.87 | 23.56 b ± 1.82 | 32.53 b,c ± 2.89 | 47.96 e,f ± 1.71 |
Leucine | 9.33 a ± 0.53 | 59.96 b,c,d ± 3.29 | 75.67 d,e,f ± 3.14 | 106.81 h,i ± 7.52 | 9.33 a ± 0.53 | 54.01 b,c ± 5.20 | 68.10 c,d,e ± 7.05 | 84.95 f,g ± 10.95 | 15.68 a ± 2.38 | 81.16 e,f,g ± 4.17 | 96.67 g,h ± 9.00 | 113.30 i ± 2.42 | 17.53 a ± 1.47 | 45.91 b ± 3.32 | 63.08 c,d ± 5.37 | 91.73 g,h ± 2.90 |
Ornithine | 4.94 a ± 0.10 | 65.08 d,e,f ± 4.45 | 76.54 f,g ± 3.71 | 102.44 h ± 7.41 | 4.94 a ± 0.10 | 72.72 e,f ± 7.01 | 89.28 g,h ± 10.07 | 97.01 h ± 10.60 | 7.55 a ± 4.40 | 67.05 d,e,f ± 2.59 | 60.13 c,d,e ± 7.04 | 48.30 b,c ± 1.54 | 7.69 a ± 0.59 | 53.92 b,c,d ± 4.46 | 44.77 b,c ± 2.58 | 40.90 b ± 1.41 |
Lysine | 25.54 a ± 1.39 | 129.26 b,c,d ± 7.54 | 165.67 e,f,g ± 9.78 | 247.65 j ± 15.52 | 25.54 a ± 1.39 | 113.28 b,c ± 10.95 | 155.91 d,e,f ± 19.42 | 202.99 h,i ± 22.37 | 38.12 a ± 10.54 | 149.75 d,e,f ± 5.64 | 176.05 f,g,h ± 20.83 | 226.17 i,j ± 5.72 | 41.44 a ± 3.56 | 99.36 b ± 1.17 | 135.51 c,d,e ± 7.43 | 197.45 g,h,i ± 8.16 |
Total AA | 550.26 a ± 33.88 | 1058.83 c,d ± 57.54 | 1185.20 c,d,e ± 45.04 | 1513.56 f ± 100.31 | 550.26 a ± 33.88 | 985.20 b,c ± 94.46 | 1186.90 c,d,e ± 115.17 | 1348.21 e,f ± 184.44 | 591.03 a ± 89.93 | 1183.98 c,d,e ± 59.62 | 1290.53 d,e,f ± 101.02 | 1424.64 e,f ± 33.04 | 752.14 a,b ± 75.14 | 945.57 b,c ± 85.53 | 1062.84 c,d ± 61.28 | 1299.27 d,e,f ± 51.00 |
Batch A | Batch B | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | LSF (Spraying) | Control | LSF (Mixing) | |||||||||||||
RM | FP | 1M | 3M | RM | FP | 1M | 3M | RM | FP | 1M | 3M | RM | FP | 1M | 3M | |
Triptamine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
β-Phenylethylamine | 1.61 a ± 2.79 | ND | ND | 0.88 a ± 0.95 | 1.61 a ± 2.79 | ND | ND | ND | ND | ND | ND | ND | 8.30 b ± 6.20 | ND | ND | ND |
Putrescine | ND | 9.65 a,b ± 1.29 | 53.11 c ± 5.98 | 50.46 c ± 0.79 | ND | 8.66 a,b ± 0.33 | 21.86 b ± 7.39 | 52.39 c ± 3.03 | ND | 131.30 d ± 3.99 | 262.61 f ± 1.90 | 418.84 h ± 17.00 | ND | 48.17 c ± 5.31 | 198.58 e ± 8.26 | 305.51 g ± 9.86 |
Cadaverine | ND | 6.28 a,b ± 1.17 | 23.40 c,d ± 3.21 | 20.91 c ± 1.47 | ND | 15.99 b,c ± 0.01 | 23.17 c,d ± 1.86 | 33.53 d ± 0.34 | ND | 126.72 f ± 3.94 | 167.75 g ± 10.66 | 165.49 g ± 6.18 | 1.47 a ± 2.34 | 21.83 c ± 1.45 | 47.06 e ± 4.85 | 56.52 e ± 1.84 |
Histamine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Tyramine | ND | 32.74 b ± 1.97 | 113.07 c ± 11.81 | 180.70 d ± 1.94 | ND | 29.77 a,b ± 0.04 | 58.19 b ± 2.39 | 138.70 c ± 4.64 | ND | 285.86 f ± 4.14 | 284.06 f ± 16.01 | 309.15 f ± 35.41 | ND | 124.82 c ± 1.80 | 191.51 d ± 0.73 | 246.28 e ± 3.32 |
Spermidine | 1.23 a,b ± 0.88 | 7.47 c ± 0.98 | 6.93 c ± 1.74 | 9.66 c ± 0.80 | 1.23 a,b ± 0.88 | 4.32 a,b,c ± 0.19 | 8.12 c ± 1.52 | 5.57 b,c ± 0.31 | ND | 5.10 a,b,c ± 0.38 | 20.85 d ± 3.10 | 22.44 d ± 3.67 | 0.26 a,b ± 0.45 | 6.71 c ± 2.06 | 18.13 d ± 3.89 | 20.32 d ± 0.66 |
Spermine | 86.56 f ± 8.54 | 71.60 c,d,e ± 2.74 | 68.05 b,c,d ± 6.33 | 67.02 b,c,d ± 2.04 | 86.56 f ± 8.54 | 55.09 a,b ± 2.25 | 55.77 a,b ± 2.15 | 51.34 a ± 1.43 | 78.68 d,e,f ±3.43 | 72.73 c,d,e,f ± 2.46 | 63.76 a,b,c ± 4.49 | 66.38 b,c,d ± 3.00 | 83.93 e,f ± 9.87 | 77.79 c,d,e,f ± 1.85 | 66.42 b,c,d ± 3.00 | 63.21 a,b,c ± 2.36 |
Total BA | 89.40 a ± 11.19 | 127.74 a,b ± 6.64 | 264.56 c ± 28.94 | 329.62 d ± 7.19 | 89.40 a ± 11.19 | 113.82 a ± 2.08 | 167.11 b ± 5.49 | 281.53 c,d ± 9.02 | 78.68 a ± 3.43 | 621.70 f ± 10.20 | 799.04 h ± 30.35 | 982.30 i ±38.25 | 93.96 a ± 14.94 | 279.32 c,d ± 0.41 | 521.70 e ± 13.96 | 691.84 g ± 17.74 |
Batch A | Batch B | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | LSF (Spraying) | Control | LSF (Mixing) | |||||||||
FP | 1M | 3M | FP | 1M | 3M | FP | 1M | 3M | FP | 1M | 3M | |
Triptamine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
β-Phenylethylamine | ND | ND | 0.62 ± 0.55 | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Histamine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Tyramine | 22.44 ± 1.11 | 77.35 ± 6.59 | 128.56 ± 1.13 | 20.20 ± 0.05 | 40.91 ± 1.15 | 99.85 ± 3.45 | 190.38 ± 2.2 | 185.11 ± 8.47 | 204.65 ± 18.76 | 82.57 ± 1.31 | 124.50 ± 0.15 | 164.43 ± 1.81 |
Vasoactive amines | 22.44 ± 1.11 | 77.35 ± 6.59 | 129.18 ± 1.44 | 20.20 ± 0.05 | 40.91 ± 1.15 | 99.85 ± 3.45 | 190.38 ± 2.2 | 185.11 ± 8.47 | 204.65 ± 18.76 | 82.57 ± 1.31 | 124.50 ± 0.15 | 164.43 ± 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes-Bispo, A.; Elias, M.; Santos, C.; Roseiro, L.C. Portuguese Traditional Dry-Fermented Sausages Processed with Liquid Smoke Flavoring: How This Alternative Technology Affects Proteolysis and Biogenic Amines Profile. Appl. Sci. 2025, 15, 1129. https://doi.org/10.3390/app15031129
Gomes-Bispo A, Elias M, Santos C, Roseiro LC. Portuguese Traditional Dry-Fermented Sausages Processed with Liquid Smoke Flavoring: How This Alternative Technology Affects Proteolysis and Biogenic Amines Profile. Applied Sciences. 2025; 15(3):1129. https://doi.org/10.3390/app15031129
Chicago/Turabian StyleGomes-Bispo, Ana, Miguel Elias, Carlos Santos, and Luisa Cristina Roseiro. 2025. "Portuguese Traditional Dry-Fermented Sausages Processed with Liquid Smoke Flavoring: How This Alternative Technology Affects Proteolysis and Biogenic Amines Profile" Applied Sciences 15, no. 3: 1129. https://doi.org/10.3390/app15031129
APA StyleGomes-Bispo, A., Elias, M., Santos, C., & Roseiro, L. C. (2025). Portuguese Traditional Dry-Fermented Sausages Processed with Liquid Smoke Flavoring: How This Alternative Technology Affects Proteolysis and Biogenic Amines Profile. Applied Sciences, 15(3), 1129. https://doi.org/10.3390/app15031129